Dopant discovery in cuprous iodide

Authors: Migle Grauzinyte1*, Stefan Goedecker1*, Silvana Botti2, Miguel Marques3, Jose Flores-Livas1

  1. University of Basel, Klingelbergstrasse 82, 4056 Basel, Basel, Switzerland.
  2. Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany.
  3. Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany.
  • Corresponding authors emails:,

DOI10.24435/materialscloud:2019.0051/v1 (version v1, submitted on 11 September 2019)

How to cite this entry

Migle Grauzinyte, Stefan Goedecker, Silvana Botti, Miguel Marques, Jose Flores-Livas, Dopant discovery in cuprous iodide, Materials Cloud Archive (2019), doi: 10.24435/materialscloud:2019.0051/v1.


Computational data to support an extensive study of prospective dopants in the zinc blende (gamma) phase of cuprous iodide. This phase of CuI holds the current record hole conductivity for intrinsic transparent p-type semiconductors. In the corresponding scientific article, a high-throughput approach was employed to systematically explore strategies for enhancing CuI further by impurity incorporation. Our objectives were to identify a practical approach for increasing hole conductivity in CuI thin films and to explore the possibility for ambivalent doping. A total of 64 chemical elements was investigated. This materials cloud record contains all optimized defective structures for Cu and I substitutional sites, calculation settings and some of the output (LOCPOT files, required for electrostatic correction calculations are not included due to their large size). Chalcogen elements were found to display acceptor character when substituting iodine. Further eight impurities suitable for n-type doping were also discovered. Unfortunately, our work further revealed that donor doping is hindered by compensating native defects.

Materials Cloud sections using this data

No Explore or Discover sections associated with this archive entry.


File name Size Description
MD5MD5: 2a8684be68677d1fdfb295e06303508a
2.0 GiB Calculation results (all defect sites) from generalized gradient (PBE) level of theory.
MD5MD5: 446efcde7a1fbfe37dcbd6cad439d260
276.5 MiB Calculation results (selected dopant sites only) from hybrid-functional (PBE0) level of theory.
MD5MD5: 526755cc93213c3eb0c651d9a1a6e216
1.7 KiB Description of the data.


Files and data are licensed under the terms of the following license: Creative Commons Attribution 4.0 International.

External references

Journal reference (An article discussing the data uploaded, in the context of enhancing the transparent-conductivity behavior for p-type CuI, and considering the possibility of n-type doping this material.)


defects transparent conductors CuI dopants supercell

Version history

11 September 2019 [This version]