×

Recommended by

Indexed by

How to verify the precision of density-functional-theory implementations via reproducible and universal workflows

Emanuele Bosoni1, Louis Beal2, Marnik Bercx3, Peter Blaha4, Stefan Blügel5, Jens Bröder5,6, Martin Callsen7,8,9, Stefaan Cottenier7,8, Augustin Degomme2, Vladimir Dikan1, Kristjan Eimre3, Espen Flage-Larsen10,11, Marco Fornari12, Alberto Garcia1, Luigi Genovese2, Matteo Giantomassi13, Sebastiaan P. Huber3,14, Henning Janssen5, Georg Kastlunger15, Matthias Krack16, Georg Kresse17,18, Thomas D. Kühne19,20, Kurt Lejaeghere8,21, Georg K. H. Madsen4, Martijn Marsman17,18, Nicola Marzari3,16, Gregor Michalicek5, Hossein Mirhosseini22, Tiziano M. A. Müller23, Guido Petretto13, Chris J. Pickard24,25, Samuel Poncé13, Gian-Marco Rignanese13, Oleg Rubel26, Thomas Ruh4,8, Michael Sluydts7,8,27, Danny E. P. Vanpoucke7,28, Sudarshan Vijay15, Michael Wolloch17,18, Daniel Wortmann5, Aliaksandr V. Yakutovich29, Jusong Yu3,16, Austin Zadoks3, Bonan Zhu30,31, Giovanni Pizzi3,16*

1 Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain

2 Univ. Grenoble-Alpes, CEA, IRIG-MEM-L Sim, 38000 Grenoble, France

3 Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

4 Institute for Materials Chemistry, Technical University of Vienna, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria

5 Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany

6 Institute for Advanced Simulation, Materials Data Science and Informatics (IAS-9), Forschungszentrum Jülich, D-52425 Jülich, Germany

7 Department of Electromechanical, Systems and Metal Engineering, Ghent University, Belgium

8 Center for Molecular Modeling (CMM), Ghent University, Belgium

9 Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan

10 Norwegian EuroHPC Competence Center, Sigma2 AS, Norway

11 SINTEF Industry, Materials Physics, Oslo, Norway

12 Department of Physics and Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, Michigan 48859, USA

13 Institut de la Matière Condensée et des Nanosciences (IMCN), Université catholique de Louvain, Chemin des Étoiles 8, Louvain-la-Neuve 1348, Belgium

14 National Centre of Competence in Research (NCCR) Catalysis, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland

15 Center for Catalysis Theory (Cattheory), Department of Physics, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark

16 Laboratory for Materials Simulations (LMS), Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland

17 University of Vienna, Faculty of Physics and Center for Computational Materials Science, Kolingasse 14-16, A-1090 Vienna, Austria

18 VASP Software GmbH, Sensengasse 8, A-1090 Vienna, Austria

19 Center for Advanced Systems Understanding (CASUS) and Helmholtz-Zentrum Dresden-Rossendorf, D-02826 Görlitz, Germany

20 Paderborn Center for Parallel Computing (PC2) and Center for Sustainable Systems Design, University of Paderborn, D-33098 Paderborn, Germany

21 OCAS NV/ArcelorMittal Global R&D Gent, Pres. J. F. Kennedylaan 3, Zelzate B-9060, Belgium

22 Dynamics of Condensed Matter, Chair of Theoretical Chemistry, University of Paderborn, D-33098 Paderborn, Germany

23 HPE HPC EMEA Research Lab, CH-4051 Basel, Switzerland

24 Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom

25 Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan

26 Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada

27 ePotentia, Frans van Dijckstraat 59, 2100 Deurne Antwerpen, Belgium

28 Institute for Materials Research (IMO-IMOMEC), UHasselt - Hasselt University, Belgium

29 Swiss Federal Laboratories for Materials Science and Technology (Empa), nanotech@surfaces laboratory, CH-8600 Dübendorf, Switzerland

30 Department of Chemistry, University College London, 20 Gordon St, Bloomsbury, London WC1H 0AJ, United Kingdom

31 The Faraday Institution, Didcot OX11 0RA, United Kingdom

* Corresponding authors emails: giovanni.pizzi@psi.ch
DOI10.24435/materialscloud:s4-3h [version v1]

Publication date: May 26, 2023

How to cite this record

Emanuele Bosoni, Louis Beal, Marnik Bercx, Peter Blaha, Stefan Blügel, Jens Bröder, Martin Callsen, Stefaan Cottenier, Augustin Degomme, Vladimir Dikan, Kristjan Eimre, Espen Flage-Larsen, Marco Fornari, Alberto Garcia, Luigi Genovese, Matteo Giantomassi, Sebastiaan P. Huber, Henning Janssen, Georg Kastlunger, Matthias Krack, Georg Kresse, Thomas D. Kühne, Kurt Lejaeghere, Georg K. H. Madsen, Martijn Marsman, Nicola Marzari, Gregor Michalicek, Hossein Mirhosseini, Tiziano M. A. Müller, Guido Petretto, Chris J. Pickard, Samuel Poncé, Gian-Marco Rignanese, Oleg Rubel, Thomas Ruh, Michael Sluydts, Danny E. P. Vanpoucke, Sudarshan Vijay, Michael Wolloch, Daniel Wortmann, Aliaksandr V. Yakutovich, Jusong Yu, Austin Zadoks, Bonan Zhu, Giovanni Pizzi, How to verify the precision of density-functional-theory implementations via reproducible and universal workflows, Materials Cloud Archive 2023.81 (2023), https://doi.org/10.24435/materialscloud:s4-3h

Description

In the past decades many density-functional theory methods and codes adopting periodic boundary conditions have been developed and are now extensively used in condensed matter physics and materials science research. Only in 2016, however, their precision (i.e., to which extent properties computed with different codes agree among each other) was systematically assessed on elemental crystals: a first crucial step to evaluate the reliability of such computations. We discuss here general recommendations for verification studies aiming at further testing precision and transferability of density-functional-theory computational approaches and codes. We illustrate such recommendations using a greatly expanded protocol covering the whole periodic table from Z=1 to 96 and characterizing 10 prototypical cubic compounds for each element: 4 unaries and 6 oxides, spanning a wide range of coordination numbers and oxidation states. The primary outcome is a reference dataset of 960 equations of state cross-checked between two all-electron codes, then used to verify and improve nine pseudopotential-based approaches. Such effort is facilitated by deploying AiiDA common workflows that perform automatic input parameter selection, provide identical input/output interfaces across codes, and ensure full reproducibility. Finally, we discuss the extent to which the current results for total energies can be reused for different goals (e.g., obtaining formation energies). This data entry contains all data to reproduce the results, as well as the resulting curated all-electron dataset and the scripts to generate the figures of the paper.

Materials Cloud sections using this data

Files

File name Size Description
README.txt
MD5md5:4d080338c4b680483f13f71187b3f404
7.9 KiB Explanation of all files in the entry, including file format description and example scripts to import the data
ACWF-verification-data-and-scripts.zip
MD5md5:6bd97a883b439507d0be4638c1bc7514
19.5 MiB Reference datasets, and codes/scripts to regenerate and analyze the data
acwf-verification_unaries-verification-PBE-v1_results_abinit_PseudoDojo_0.5b1_PBE_SR_standard_psp8.aiida
MD5md5:918ef3630cbaacb3979490a2acfb5e2e
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
648.9 MiB AiiDA archive file for the unaries set run with ABINIT
acwf-verification_oxides-verification-PBE-v1_results_abinit_PseudoDojo_0.5b1_PBE_SR_standard_psp8.aiida
MD5md5:1a8ca2601ee20c2fdcfd55617da278be
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
1.2 GiB AiiDA archive file for the oxides set run with ABINIT
BigDFT_acwf_chunked.tar
MD5md5:dd4d96a44162d386fb51609bb01ab38c
9.1 GiB AiiDA archive files (tarred) for the unaries and oxides set run with BigDFT
acwf-verification_unaries-verification-PBE-v1_results_castep.aiida
MD5md5:ec45971660b7eaa8e41fc7bb4ae6647c
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
1020.5 MiB AiiDA archive file for the unaries set run with CASTEP
acwf-verification_oxides-verification-PBE-v1_results_castep.aiida
MD5md5:91c7d3d8b48291a2815aea61dae0bbed
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
1.6 GiB AiiDA archive file for the oxides set run with CASTEP
acwf-verification_unaries-verification-PBE-v1_results_cp2k_TZV2P.aiida
MD5md5:f586f047335339d76a4f3f7b7aa48e28
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
1.3 GiB AiiDA archive file for the unaries set run with CP2K
acwf-verification_oxides-verification-PBE-v1_results_cp2k_TZV2P.aiida
MD5md5:8afd14e63ea372b028625849d634e460
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
1.3 GiB AiiDA archive file for the oxides set run with CP2K
acwf-verification_unaries-verification-PBE-v1_results_fleur_testPrecise_22.aiida
MD5md5:0ef2723acbceaa301c2811f70a7830b3
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
11.5 GiB AiiDA archive file for the unaries set run with FLEUR
acwf-verification_oxides-verification-PBE-v1_results_fleur_testPrecise_22.aiida
MD5md5:00573bdeba2f6a24629cc99a1060810c
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
25.2 GiB AiiDA archive file for the oxides set run with FLEUR
acwf-verification_unaries-verification-PBE-v1_results_gpaw.aiida
MD5md5:848d6ab105d15afc6795d0a38fbcdae4
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
48.3 MiB AiiDA archive file for the unaries set run with GPAW
acwf-verification_oxides-verification-PBE-v1_results_gpaw.aiida
MD5md5:f045f469aaeb36dc7a5960cde62bd2cd
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
69.3 MiB AiiDA archive file for the oxides set run with GPAW
acwf-verification_unaries-verification-PBE-v1-results_quantum_espresso-SSSP-1.3-PBE-precision.aiida
MD5md5:5f6156d3e2583bf95195184e6d01505f
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
1.9 GiB AiiDA archive file for the unaries set run with Quantum ESPRESSO
acwf-verification_oxides-verification-PBE-v1-results_quantum_espresso-SSSP-1.3-PBE-precision.aiida
MD5md5:adc519b0dfa398fd9f10d296a59e4cbc
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
2.7 GiB AiiDA archive file for the oxides set run with Quantum ESPRESSO
acwf-verification_unaries-verification-PBE-v1_results_siesta.aiida
MD5md5:51ad8b074eaaeabb3a087789944fdc7e
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
635.9 MiB AiiDA archive file for the unaries set run with SIESTA
acwf-verification_oxides-verification-PBE-v1_results_siesta.aiida
MD5md5:2b8433969e2a676a2571d3023d6446c1
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
1.7 GiB AiiDA archive file for the oxides set run with SIESTA
acwf-verification_unaries-verification-PBE-v1_results_cp2k_SIRIUS.aiida
MD5md5:844ee03192a1c6f427387c2ba7edbd4b
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
1.7 GiB AiiDA archive file for the unaries set run with SIRIUS/CP2K
acwf-verification_oxides-verification-PBE-v1_results_cp2k_SIRIUS.aiida
MD5md5:06208c5fe4fcf16d50dce5af5efd4dd3
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
5.6 GiB AiiDA archive file for the oxides set run with SIRIUS/CP2K
acwf-verification_unaries-verification-PBE-v1_results_vasp.aiida
MD5md5:8a2ea8774a1dbd1baee40d428e20dd50
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
1.2 GiB AiiDA archive file for the unaries set run with VASP
acwf-verification_oxides-verification-PBE-v1_results_vasp.aiida
MD5md5:8916658972801689926f66a6b1b01b62
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
1.7 GiB AiiDA archive file for the oxides set run with VASP
acwf-verification_unaries-verification-PBE-v1_results_wien2k.aiida
MD5md5:220d5f816f3b5891f2f6c5eaab9925ac
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
164.5 MiB AiiDA archive file for the unaries set run with WIEN2k
acwf-verification_oxides-verification-PBE-v1_results_wien2k.aiida
MD5md5:795a246a002aac26c969046a512ee670
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
205.6 MiB AiiDA archive file for the oxides set run with WIEN2k

License

Files and data are licensed under the terms of the following license: Creative Commons Attribution 4.0 International.
Metadata, except for email addresses, are licensed under the Creative Commons Attribution Share-Alike 4.0 International license.

External references

Journal reference (Journal paper)
E. Bosoni et al., How to verify the precision of density-functional-theory implementations via reproducible and universal workflows, Nat. Rev. Phys. 6, 45 (2024) doi:10.1038/s42254-023-00655-3
Website (Interactive visualization of the data generated in the paper)

Keywords

DFT verification pseudopotentials automation equation of state MARVEL/P3

Version history:

2023.81 (version v1) [This version] May 26, 2023 DOI10.24435/materialscloud:s4-3h