×

Recommended by

Indexed by

Elucidating structure and function of Ni/La-doped-ceria catalysts for CO2 reduction by the reverse water gas shift reaction

Consuelo Alvarez-Galvan1, Pablo Lustemberg1,2*, Jose A. Alonso3, Freddy Oropeza4, María Herranz1, Jesus Cebollada1, Martin Dapena1, Jose M. Campos-Martin1, Victor A. de la Peña-O’Shea4, M. Veronica Ganduglia-Pirovano1

1 Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049, Madrid, Spain

2 Instituto de Física Rosario (IFIR), CONICET-UNR, Bv. 27 de Febrero 210bis, S2000EZP Rosario, Santa Fe, Argentina

3 Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid, Spain

4 IMDEA ENERGÍA, Móstoles, Madrid, Spain

* Corresponding authors emails: lustemberg@gmail.com
DOI10.24435/materialscloud:dc-46 [version v1]

Publication date: Mar 17, 2021

How to cite this record

Consuelo Alvarez-Galvan, Pablo Lustemberg, Jose A. Alonso, Freddy Oropeza, María Herranz, Jesus Cebollada, Martin Dapena, Jose M. Campos-Martin, Victor A. de la Peña-O’Shea, M. Veronica Ganduglia-Pirovano, Elucidating structure and function of Ni/La-doped-ceria catalysts for CO2 reduction by the reverse water gas shift reaction, Materials Cloud Archive 2021.43 (2021), https://doi.org/10.24435/materialscloud:dc-46

Description

Reducing and/or utilizing CO2 in the atmosphere is mandatory to decrease its negative effects as greenhouse gas. The reverse water gas shift reaction (rWGS) is one of the most promising routes for CO2 valorization. Here, we show that Ni/La-doped ceria catalysts, prepared by the solution combustion synthesis method, has an excellent catalytic performance per unit mass of catalyst. Structure-activity correlations obtained using a combination of different techniques such as X-ray and neutron diffraction, Raman spectroscopy, in-situ NAP-XPS, Electron Microscopy, and catalytic testing, point out to optimum values for the Ni loading and the La proportion. Density functional theory calculations of the elementary steps of the reaction on model Ni/ceria catalysts aid toward the microscopic understanding of the active sites nature. Metallic Ni activates H2 dissociation and a certain La doping maximizes Ce3+ sites, which supplies greater available oxygen to form H2O. These findings are essential for the rational design of highly efficient and selective rWGS catalysts.

Materials Cloud sections using this data

No Explore or Discover sections associated with this archive record.

Files

File name Size Description
README.txt
MD5md5:4b0bc46e1599097f69146e67b98e7857
1.8 KiB README text
references.zip
MD5md5:66f496f45ffc9e3dd457d5a7bb900462
1012.2 KiB DFT calculations corresponding to the models of Ni4 nanoclusters on CeO2(111) and Ce2O3(0001) and Ni(111) surface, and calculations of H2O, CO, CO2 and H2 molecules in gas phase.
CO2_to_CO+O.zip
MD5md5:d049738fdf811a6259fc59bad060629a
22.1 MiB Initial state (IS), the final state (FS) and the transition state (TS) for carbon dioxide dissociation pathway on Ni4.CeO2(111), Ni4.Ce2O3(0001) and Ni(111).
H2_to_H+H.zip
MD5md5:d3f6bbee46ca8627715c9445c0a745fc
15.4 MiB Initial state (IS), the final state (FS) and the transition state (TS) for hydrogen dissociation pathway on Ni4.CeO2(111), Ni4.Ce2O3(0001) and Ni(111).
H_diffusion.zip
MD5md5:325db25d33898cfb1e5d7b2dca6a5976
13.7 MiB Initial state (IS), the final state (FS) and the transition state (TS) for hydrogen diffusion pathway on Ni4.CeO2(111) and Ni4.Ce2O3(0001).

License

Files and data are licensed under the terms of the following license: Creative Commons Attribution 4.0 International.
Metadata, except for email addresses, are licensed under the Creative Commons Attribution Share-Alike 4.0 International license.

External references

Journal reference
C. Alvarez-Galvan, P. Lustemberg, J. A. Alonso, F. Oropeza, M. Herranz, J. Cebollada, M. Dapena, J. M. Campos-Martin, V. A. de la Peña-O’Shea, M. V. Ganduglia-Pirovano (submitted 2021)

Keywords

CO2 reduction RWGS nickel CeO2 Lanthanum Oxygen Vacancies

Version history:

2021.43 (version v1) [This version] Mar 17, 2021 DOI10.24435/materialscloud:dc-46