Published August 21, 2022 | Version v1
Dataset Open

Ferroelectric, quantum paraelectric, or paraelectric? Calculating the evolution from BaTiO3 to SrTiO3 to KTaO3 using a single-particle quantum mechanical description of the ions

  • 1. Materials Theory, Department of Materials, ETH Zürich

* Contact person

Description

We present an inexpensive first-principles approach for describing quantum paraelectricity that combines density functional theory (DFT) treatment of the electronic subsystem with quantum mechanical treatment of the ions through solution of the single-particle Schrödinger equation with the DFT-calculated potential. Using BaTiO3, SrTiO3, and KTaO3 as model systems, we show that the approach can straightforwardly distinguish between ferroelectric, paraelectric, and quantum paraelectric materials, based on simple quantities extracted from standard density functional and density functional perturbation theories. We calculate the influence of isotope substitution and strain on quantum paraelectric behavior and find that, while complete replacement of oxygen-16 by oxygen-18 has a surprisingly small effect, experimentally accessible strains can induce large changes. Finally, we collect the various choices for the phonon mass that have been introduced in the literature. We ide tify those that are most physically meaningful by comparing them with our results that avoid such a choice through the use of mass-weighted coordinates.

Files

File preview

files_description.md

All files

Files (3.5 MiB)

Name Size
md5:b4aa406bc5af73915610b621c77318fc
193 Bytes Preview Download
md5:d031427b744ee8ce669d57e2af82aa66
3.5 MiB Preview Download
md5:fde02b604415b5cfd295820d1bd12eeb
2.0 KiB Preview Download

References

Preprint
T. Esswein, N. A. Spaldin, arXiv:2112.11284 [cond-mat] (2021)., doi: 10.48550/arXiv.2112.11284

Journal reference
T. Esswein, N. A. Spaldin, Physical Review Research 4, 033020 (2022)., doi: 10.1103/PhysRevResearch.4.033020