A microscopic picture of paraelectric perovskites from structural prototypes
Creators
- 1. Theory and Simulations of Materials (THEOS), École Polytechnique Fedérale de Lausanne, 1015 Lausanne, Switzerland
- 2. National Centre for Computational Design and Discovery of Novel Materials (MARVEL), 1015 Lausanne, Switzerland
- 3. Designed Material Technologies, LLC, P.O. Box 14548, Richmond, VA 23221-9998, US
- 4. John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
- 5. Robert Bosch LLC, Research and Technology Center, Cambridge, Massachusetts 02142, USA
- 6. Department of Physics and Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, Michigan 48859, US
* Contact person
Description
This work details how to determine structural prototypes for the cubic perovskite structure that are used to study the B-site displacements in the cubic, paraelectric phase. Car-Parrinello MD simulations of cubic barium titanate (BaTiO3) show the titanium displacements from the undistorted cubic structure. Using a systematic symmetry analysis we construct microscopic templates, i.e. representative structural models in the form of supercells that satisfy a desired point symmetry but are built from the combination of lower-symmetry primitive cells. Density functional theory calculations, using the microscopic templates as starting structures for a relaxation, are carried out to find structural prototypes of BaTiO3 with local polar distortions but with cubic point symmetry. The stability of these structures is studied as a function of volume and with respect to the zone-boundary phonons of pristine cubic BaTiO3. The stable distortions patterns for BaTiO3 are investigated for other titanates and for a handful of niobates and zirconates.
Files
File preview
      
        files_description.md
        
      
    
    All files
      
        Files
         (612.8 MiB)
        
      
    
    | Name | Size | |
|---|---|---|
| md5:7f49bfc92eaebadd9db6d148b5422e05 | 1.3 KiB | Preview Download | 
| md5:f9b290c5bbd5a2da62f439b47d66a822 | 315.7 MiB | Preview Download | 
| md5:8c40506212060cf440794235f5f1d591 | 243.0 MiB | Preview Download | 
| md5:785730b6237f72e7297577ad43498877 | 8.4 MiB | Preview Download | 
| md5:de1207ab0f532282f4733e8d039ad45d | 18.2 MiB | Preview Download | 
| md5:81c8be20fe7fdacd1596c01a77e2a25f | 246.9 KiB | Preview Download | 
| md5:ff653596767e303f7f23ba228810a2c7 | 27.2 MiB | Preview Download | 
| md5:9ccb1773bcd0affc0d3da6f9c99b5b4c | 1.2 KiB | Preview Download | 
References
Preprint M. Kotiuga, S. Halilov, B. Kozinsky, M. Fornari, N. Marzari, G. Pizzi, arXiv preprint (2021), ArXiv:2107.04628., doi: 10.48550/arXiv.2107.04628
Journal reference M. Kotiuga, S. Halilov, B. Kozinsky, M. Fornari, N. Marzari, and G.Pizzi, Phys. Rev. Research 4, L012042 (2022), doi: 10.1103/PhysRevResearch.4.L012042