Published July 5, 2024 | Version v1
Dataset Open

Low-energy modeling of three-dimensional topological insulator nanostructures

  • 1. Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany
  • 2. JARA-Fundamentals of Future Information Technology, Jülich-Aachen Research Alliance, Forschungszentrum Jülich and RWTH Aachen University, 52425 Jülich, Germany
  • 3. Department of Physics and Materials Science, University of Luxembourg, 1511 Luxembourg, Luxembourg
  • 4. Peter Grünberg Institute (PGI-1), Forschungszentrum Jülich, 52425 Jülich, Germany
  • 5. Institute for Cross-Disciplinary Physics and Complex Systems IFISC (CSIC-UIB), E-07122 Palma, Spain
  • 6. Department of Physics, University of the Balearic Islands, E-07122 Palma, Spain
  • 7. JARA-FIT Institute: Green IT, Jülich-Aachen Research Alliance, Forschungszentrum Jülich and RWTH Aachen University, 52425 Jülich, Germany
  • 8. Institute for Theoretical Physics and Astrophysics, University of Würzburg, 97074 Würzburg, Germany

* Contact person

Description

We develop an accurate nanoelectronic modeling approach for realistic three-dimensional topological insulator nanostructures and investigate their low-energy surface-state spectrum. Starting from the commonly considered four-band k·p bulk model Hamiltonian for the Bi₂Se₃ family of topological insulators, we derive new parameter sets for Bi₂Se₃, Bi₂Te₃ and Sb₂Te₃. We consider a fitting strategy applied to ab initio band structures around the Γ point that ensures a quantitatively accurate description of the low-energy bulk and surface states, while avoiding the appearance of unphysical low-energy states at higher momenta, something that is not guaranteed by the commonly considered perturbative approach. We analyze the effects that arise in the low-energy spectrum of topological surface states due to band anisotropy and electron-hole asymmetry, yielding Dirac surface states that naturally localize on different side facets. In the thin-film limit, when surface states hybridize through the bulk, we resort to a thin-film model and derive thickness-dependent model parameters from ab initio calculations that show good agreement with experimentally resolved band structures, unlike the bulk model that neglects relevant many-body effects in this regime. Our versatile modeling approach offers a reliable starting point for accurate simulations of realistic topological material-based nanoelectronic devices. This dataset contains the data used in the corresponding publication.

Files

File preview

files_description.md

All files

Files (4.3 GiB)

Name Apps Size
md5:4848ea3f12fa9d06551dbe844b02eb4e
424 Bytes Preview Download
md5:c63b5d8a255fa5d78c4a10217ba4274d
856.4 KiB Preview Download
md5:31b60118aaa0ca8ab6aa3eebbbb4de72
4.2 GiB Download
md5:edd1929c3ebf8bdd7fe8c983d8f90922
8.7 MiB Preview Download
md5:0664106485de9fcd8a34562150ebce23
2.1 KiB Preview Download
md5:ba62ccd489b84e11a2b3c920eb9943c9
5.2 KiB Preview Download

References

Journal reference (Paper where the data is discussed)
Eduárd Zsurka, Cheng Wang, Julian Legendre, Daniele Di Miceli, Llorenç Serra, Detlev Grützmacher, Thomas L. Schmidt, Philipp Rüßmann, and Kristof Moors, Low-energy modeling of three-dimensional topological insulator nanostructures, Phys. Rev. Materials 8, 084204 (2024), doi: 10.1103/PhysRevMaterials.8.084204

Preprint (Paper where the data is discussed)
E. Zsurka, C. Wang, J. Legendre, D. Di Miceli, L. Serra, D. Grützmacher, T. L. Schmidt, P Rüßmann, and K. Moors, arXiv:2404.13959 (2024)., doi: 10.48550/arXiv.2404.13959

Software (Source code of the JuKKR code)
The JuKKR developers, JuDFTteam/JuKKR: v3.6 (v3.6), Zenodo. (2022), doi: 10.5281/zenodo.7284739

Software (Source code for the AiiDA-KKR plugin)
P. Rüßmann, F. Bertoldo, J. Bröder, J. Wasmer, R. Mozumder, J. Chico, and S. Blügel, Zenodo (2021), doi: 10.5281/zenodo.3628251

Journal reference (AiiDA-KKR method paper)
P. Rüßmann, F. Bertoldo, and S. Blügel, The AiiDA-KKR plugin and its application to high-throughput impurity embedding into a topological insulator. npj Comput Mater 7, 13 (2021), doi: 10.1038/s41524-020-00482-5