Published October 10, 2024 | Version v3
Dataset Open

A deep learning dataset for metal multiaxial fatigue life prediction

  • 1. School of Civil Engineering, Chongqing University, Chongqing 400045, China
  • 2. Research Center of Steel Structure Engineering, Chongqing University, Chongqing 400045, China

* Contact person

Description

In this work, we present a comprehensive dataset designed to facilitate the prediction of metal fatigue life using deep learning techniques. The dataset includes detailed experimental data from 40 different metallic materials, comprising a total of 1195 data points under 48 distinct loading paths. Each data point is stored in a CSV file, capturing the loading path as a time-series with axial and tangential stress or strain values.The primary purpose of this dataset is to support the development and validation of deep learning models aimed at accurately predicting the fatigue life of metals under various loading conditions. This dataset includes stress-controlled and strain-controlled data, ensuring a broad representation of experimental scenarios. Additionally, an Excel file accompanies the dataset, providing detailed mechanical properties of each material, such as elastic modulus, tensile strength, yield strength, and Poisson's ratio, along with references to the original experimental sources.This dataset is intended for researchers in materials science and mechanical engineering, offering a robust foundation for training and testing deep learning algorithms in fatigue analysis. By making this dataset publicly available, we aim to foster collaboration and further advancements in the field of metal fatigue prediction. Researchers are encouraged to utilize and contribute to the dataset, thereby enhancing its scope and applicability.

Files

File preview

files_description.md

All files

Files (1.8 MiB)

Name Size
md5:7315eb063f9ab4af746bd36e10beeca4
642 Bytes Preview Download
md5:e5c8588f0589616213adfd36d066d2a3
1.8 MiB Preview Download

References

Journal reference (Paper where the data is discussed)
Chen, S., Bai, Y., Zhou, X. et al. A deep learning dataset for metal multiaxial fatigue life prediction. Sci Data 11, 1027 (2024).

Journal reference (Source of the collected data)
Chen, X., An, K., & Kim, K. S. Fatigue & Fracture of Engineering Materials & Structures, 27(6), 439-448 (2004), doi: 10.1111/j.1460-2695.2004.00740.x

Journal reference (Source of the collected data)
Hoffmeyer, J., Döring, R., Seeger, T., & Vormwald, M. International journal of fatigue, 28(5-6), 508-520. (2006), doi: 10.1016/j.ijfatigue.2005.05.014

Journal reference (Source of the collected data)
Pejkowski, Ł., & Skibicki, D. International Journal of Fatigue, 128, 105202 (2019), doi: 10.1016/j.ijfatigue.2019.105202

Journal reference (Source of the collected data)
Feng, E. S., Wang, X. G., & Jiang, C. International Journal of Fatigue, 122, 1-8 (2019), doi: 10.1016/j.ijfatigue.2019.01.003

Website (Source of the collected data)
Jones, D. J., & Kurath, P. NASA Contractor Report 182126 (1988)

Journal reference (Source of the collected data)
Albinmousa, J., Adinoyi, M. J., & Merah, N. International Journal of Pressure Vessels and Piping, 192, 104393 (2021), doi: 10.1016/j.ijpvp.2021.104393

Journal reference (Source of the collected data)
Karolczuk, A., Kluger, K., & Palin-Luc, T. International Journal of Fatigue, 147, 106174 (2021), doi: 10.1016/j.ijfatigue.2021.106174

Journal reference (Source of the collected data)
Zhao, T., & Jiang, Y. InternationAl journal of fatigue, 30(5), 834-849 (2008), doi: 10.1016/j.ijfatigue.2007.07.005

Journal reference (Source of the collected data)
Gates, N. R., & Fatemi, A. International Journal of Fatigue, 100, 322-336 (2017), doi: 10.1016/j.ijfatigue.2017.03.042

Journal reference (Source of the collected data)
Su, W., & Zhu, H. M. Materials Testing, 64(11), 1572-1585 (2022), doi: 10.1515/mt-2022-0172

Journal reference (Source of the collected data)
Lin, H., Nayeb‐Hashemi, H., & Pelloux, R. M. Fatigue & Fracture of Engineering Materials & Structures, 16(7), 723-742 (1993), doi: 10.1111/j.1460-2695.1993.tb00115.x

Journal reference (Source of the collected data)
Susmel, L., & Petrone, N. In European Structural Integrity Society (Vol. 31, pp. 83-104). Elsevier (2003), doi: 10.1016/S1566-1369(03)80006-7

Journal reference (Source of the collected data)
Wang, Y. Y., & Yao, W. X. International Journal of fatigue, 28(4), 401-408 (2006), doi: 10.1016/j.ijfatigue.2005.07.007

Journal reference (Source of the collected data)
Ma, T. H., Chang, L., Guo, S., Kong, L. R., He, X. H., & Zhou, C. Y. International Journal of Fatigue, 140, 105818 (2020), doi: 10.1016/j.ijfatigue.2020.105818

Journal reference (Source of the collected data)
Wu, Z. R., Hu, X. T., & Song, Y. D. International Journal of Fatigue, 59, 170-175 (2014), doi: 10.1016/j.ijfatigue.2013.08.028

Journal reference (Source of the collected data)
Yu, Q., Zhang, J., Jiang, Y., & Li, Q. International Journal of Fatigue, 33(3), 437-447 (2011), doi: 10.1016/j.ijfatigue.2010.09.020

Journal reference (Source of the collected data)
Xiong, Y., Yu, Q., & Jiang, Y. Materials Science and Engineering: A, 546, 119-128 (2012), doi: 10.1016/j.msea.2012.03.039

Journal reference (Source of the collected data)
Albinmousa, J., Adinoyi, M. J., & Merah, N. Fatigue & Fracture of Engineering Materials & Structures, 42(10), 2276-2289 (2019), doi: 10.1111/ffe.13048

Journal reference (Source of the collected data)
Kim, K. S., Nam, K. M., Kwak, G. J., & Hwang, S. M. International journal of fatigue, 26(7), 683-689 (2004), doi: 10.1016/j.ijfatigue.2003.11.005

Journal reference (Source of the collected data)
Kim, K. S., Park, J. C., & Lee, J. W. J. Eng. Mater. Technol, 121(3): 286-293 (8 pages) (1999), doi: 10.1115/1.2812377

Journal reference (Source of the collected data)
Cheng Z. Doctoral dissertation, Nanjing: Nanjing University of Aeronautics and Astronautics (2010), doi: 10.7666/d.d167264

Journal reference (Source of the collected data)
Cheng Z. Doctoral dissertation, Nanjing: Nanjing University of Aeronautics and Astronautics (2010)

Journal reference (Source of the collected data)
Zhang X. Master's thesis, Nanning: Guangxi University (2013), doi: 10.7666/d.Y2407972

Journal reference (Source of the collected data)
Zhang X. Master's thesis, Nanning: Guangxi University (2013)

Journal reference (Source of the collected data)
Gang, Z. Master's thesis, Nanning: Guangxi University (2015), doi: 10.7666/d.Y2887183

Journal reference (Source of the collected data)
Gang, Z. Master's thesis, Nanning: Guangxi University (2015)

Journal reference (Source of the collected data)
Arora, P., Gupta, S. K., Bhasin, V., Singh, R. K., Sivaprasad, S., & Tarafder, S. International Journal of Fatigue, 85, 98-113 (2016), doi: 10.1016/j.ijfatigue.2015.12.002

Journal reference (Source of the collected data)
Shang D, & Wang D. Multiaxial fatigue strength(in Chinese). Science Press. (2007)

Journal reference (Source of the collected data)
Jiang, Y., Hertel, O., & Vormwald, M. International Journal of Fatigue, 29(8), 1490-1502 (2007), doi: 10.1016/j.ijfatigue.2006.10.028

Journal reference (Source of the collected data)
Gao, Z., Zhao, T., Wang, X., & Jiang, Y. J. Pressure Vessel Technol. 131(2): 021403 (9 pages) (2009), doi: 10.1115/1.3008041

Journal reference (Source of the collected data)
Fatemi, A., & Socie, D. F. Fatigue & Fracture of Engineering materials & structures, 11(3), 149-165 (1988), doi: 10.1111/j.1460-2695.1988.tb01169.x

Journal reference (Source of the collected data)
Doquet, V., & Pineau, A. In Third International Conference on Biaxial/Multiaxial Fatigue (pp. 81-101). MEP (1991)

Journal reference (Source of the collected data)
Lee, S. B. In Multiaxial fatigue. ASTM International (1985), doi: 10.1520/STP36242S

Journal reference (Source of the collected data)
Han, C., Chen, X., & Kim, K. S. International Journal of Fatigue, 24(9), 913-922 (2002), doi: 10.1016/S0142-1123(02)00013-0

Journal reference (Source of the collected data)
Skibicki, D., & Pejkowski, Ł. International Journal of Fatigue, 102, 18-36 (2017), doi: 10.1016/j.ijfatigue.2017.04.011

Journal reference (Source of the collected data)
Shang, D. G., Sun, G. Q., Chen, J. H., Cai, N., & Yan, C. L. Materials Science and Engineering: A, 432(1-2), 231-238 (2006), doi: 10.1016/j.msea.2006.06.014

Journal reference (Source of the collected data)
Bonacuse, P. J., & Kalluri, S. J. Eng. Mater. Technol. Apr 1995, 117(2): 191-199 (9 pages) (1995), doi: 10.1115/1.2804529

Journal reference (Source of the collected data)
Socie D F, Shield T W. J. Eng. Mater. Technol. Jul 1984, 106(3): 227-232 (6 pages) (1984), doi: 10.1115/1.3225707