Reversible dehalogenation in on-surface aryl-aryl coupling
Creators
- 1. Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 8600 Dübendorf, Switzerland
- 2. Institute of Physics, École Polytechnique Fédérale de Lausanne, Laboratory of Nanostructures at Surfaces, 1015 Lausanne, Switzerland
- 3. Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
* Contact person
Description
The record contains the data to support the findings of our recent work on reversibility of the dehalogenation process in on-surface aryl-aryl coupling. In the emerging field of on‐surface synthesis, dehalogenative aryl–aryl coupling is unarguably the most prominent tool for the fabrication of covalently bonded carbon‐based nanomaterials. Despite its importance, the reaction kinetics are still poorly understood. Here we present a comprehensive temperature‐programmed x‐ray photoelectron spectroscopy investigation of reaction kinetics and energetics in the prototypical on‐surface dehalogenative polymerization of 4,4′′‐dibromo‐p‐terphenyl into poly(para‐phenylene) on two coinage metal surfaces, Cu(111) and Au(111). We find clear evidence for reversible dehalogenation on Au(111), which is inhibited on Cu(111) owing to the formation of organometallic intermediates. The incorporation of reversible dehalogenation in the reaction rate equations leads to excellent agreement with experimental data and allows extracting the relevant energy barriers. Our findings deepen the mechanistic understanding and call for its reassessment for surface‐confined aryl–aryl coupling on the most frequently used metal substrates.
Files
File preview
files_description.md
All files
References
Journal reference S. Stolz, M. Di Giovannantonio, J.I. Urgel, Q. Sun, A. Kinikar, G. Borin Barin, M. Bommert, R. Fasel, R. Widmer, Angew. Chem. Int. Ed. 59, 14106 - 14110 (2020)., doi: 10.1002/anie.202005443