Topological frustration induces unconventional magnetism in a nanographene
Creators
- 1. nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
- 2. Faculty of Chemistry and Food Chemistry, and Center for Advancing Electronics Dresden, Technical University of Dresden, Dresden, Germany
- 3. Department of Applied Physics, Aalto University, Espoo, Finland
- 4. Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Mainz, Germany
- 5. Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
* Contact person
Description
The chemical versatility of carbon imparts manifold properties to organic compounds, where magnetism remains one of the most desirable but elusive. Polycyclic aromatic hydrocarbons, also referred to as nanographenes, show a critical dependence of electronic structure on the topologies of the edges and the π-electron network, which makes them model systems with which to engineer unconventional properties including magnetism. In 1972, Erich Clar envisioned a bow-tie-shaped nanographene, C38H18, where topological frustration in the π-electron network renders it impossible to assign a classical Kekulé structure without leaving unpaired electrons, driving the system into a magnetically non-trivial ground state. In this record we include data needed to support our recent work where we demonstrate the experimental realization and in-depth characterization of this emblematic nanographene, known as Clar's goblet. Scanning tunnelling microscopy and spin excitation spectroscopy of individual molecules on a gold surface reveal a robust antiferromagnetic order with an exchange-coupling strength of 23 meV, exceeding the Landauer limit of minimum energy dissipation at room temperature. Through atomic manipulation, we realize switching of magnetic ground states in molecules with quenched spins. Our results provide direct evidence of carbon magnetism in a hitherto unrealized class of nanographenes, and prove a long-predicted paradigm where topological frustration entails unconventional magnetism, with implications for room-temperature carbon-based spintronics.
Files
File preview
files_description.md
All files
References
Journal reference S. Mishra, D. Beyer, K. Eimre, S. Kezilebieke, R. Berger, O. Gröning, C.A. Pignedoli, K. Müllen, P. Liljeroth, P. Ruffieux, X. Feng and R. Fasel, Nat. Nanotechnol. 15, 22-28 (2020), doi: 10.1038/s41565-019-0577-9