Published September 26, 2023 | Version v1
Dataset Open

Do we really need machine learning interatomic potentials for modeling amorphous metal oxides? Case study on amorphous alumina by recycling an existing ab-initio database.

  • 1. Laboratory for Advanced Materials Processing, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
  • 2. Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université Bourgogne Franche-Comté, 9 Avenue A. Savary, Dijon Cedex, France
  • 3. Laboratory for Joining Technologies and Corrosion, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf, Switzerland

* Contact person

Description

In this study, we benchmarked various interatomic potentials and force fields in comparison to an ab initio dataset for bulk amorphous alumina. We investigated a comprehensive set of fixed-charge and variable-charge potentials tailored for alumina. We also train a machine learning interatomic potential, using the NequIP framework. Results highlight that the fixed-charge potential by Matsui provides an ideal blend of computational speed and alignment with ab initio findings for stoichiometric alumina. For non-stoichiometric variants, the variable charge potentials, especially ReaxFF, align remarkably well with DFT outcomes. The NequIP ML potential, while superior in some instances and adaptable, might not be the best fit for specific tasks.

Files

File preview

files_description.md

All files

Files (10.1 MiB)

Name Size
md5:fadf2d4bbbac1bdbd27883c65ba0509e
200 Bytes Preview Download
md5:9cfff9e0a25da83e803dd8d2812bd53c
10.1 MiB Preview Download
md5:68a87e92263dc8ad1fd49acf85ccabfd
1.3 KiB Preview Download

References

Journal reference (Publication describing the methods and discussing the results.)
S.Gramatte, V. Turlo, O. Politano, Modelling Simul. Mater. Sci. Eng. 32, 045010 (2024), doi: 10.1088/1361-651X/ad39ff

Journal reference (Publication describing the methods and discussing the results.)
S.Gramatte, V. Turlo, O. Politano, Modelling Simul. Mater. Sci. Eng. 32, 045010 (2024)