Published November 11, 2022 | Version v1
Dataset Open

A machine learning model of chemical shifts for chemically and structurally diverse molecular solids

  • 1. Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
  • 2. Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
  • 3. Institut des matériaux, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

* Contact person

Description

Nuclear magnetic resonance (NMR) chemical shifts are a direct probe of local atomic environments and can be used to determine the structure of solid materials. However, the substantial computational cost required to predict accurate chemical shifts is a key bottleneck for NMR crystallography. We recently introduced ShiftML, a machine-learning model of chemical shifts in molecular solids, trained on minimum-energy geometries of materials composed of C, H, N, O, and S that provides rapid chemical shift predictions with density functional theory (DFT) accuracy. Here, we extend the capabilities of ShiftML to predict chemical shifts for both finite temperature structures and more chemically diverse compounds, while retaining the same speed and accuracy. For a benchmark set of 13 molecular solids, we find a root-mean-squared error of 0.47 ppm with respect to experiment for 1H shift predictions (compared to 0.35 ppm for explicit DFT calculations), while reducing the computational cost by over four orders of magnitude.

Files

File preview

files_description.md

All files

Files (17.8 GiB)

Name Size
md5:476cff7a8898e3aa9815bf03bea02c90
1.7 KiB Preview Download
md5:68520acd7410ffdd60627679501b2c38
461.7 KiB Preview Download
md5:7fda429b5eadf7378ec1903ca19cd278
115.3 MiB Preview Download
md5:5bc1ddc62a1fb532e8707b723a5de6ab
39.0 MiB Preview Download
md5:c4bcccd488166a2df257f652412574aa
1.2 KiB Preview Download
md5:a4c9f521cf6352704e9fd477b7767967
6.3 MiB Preview Download
md5:12d0872eb54908dc6ea6244895b4da0e
55.3 KiB Preview Download
md5:28b1c98148fef74cd3991adf97f3f55e
537.2 KiB Preview Download
md5:915ddef4e10c74b1d92215315500a289
3.3 GiB Download
md5:0be6d72103c591f8239164f922fbbad4
25.3 MiB Download
md5:d92aefad57270115a756fd3e301a8de5
944.0 MiB Download
md5:71a8c7dc1b010f76857e2cc41bcf2e16
1.5 GiB Download
md5:0155e4f88b00a52c7ee7555012961149
3.5 GiB Download
md5:1d9e1ae13b2e8c97b82ff16cc216bfe3
44.5 MiB Download
md5:407b0ee50683d1296e6d9480413cc165
11.4 MiB Download
md5:2f0fce6d788c6b7c07d917454dcff6a5
3.4 GiB Download
md5:7fd44392f47b46730e22d1adf5576dd7
51.7 MiB Download
md5:421a80c90cdd54110dcbe96b94cb3ab5
3.5 GiB Download
md5:6f1c6a6cdbb60de78ddb9cac0edf3ec0
362.4 MiB Download
md5:8373a1dcc7065aec7dbc91d2f6cb17ab
1.0 GiB Download
md5:2a952934a684939ef148beb13116a1da
2.8 MiB Preview Download

References

Journal reference (Paper in which the method is described)
M. Cordova, E. A. Engel, A. Stefaniuk, F. Paruzzo, A. Hofstetter, M. Ceriotti, L. Emsley, J. Phys. Chem. C 126, 16710-16720 (2022), doi: 10.1021/acs.jpcc.2c03854

Journal reference (Paper in which the method is described)
M. Cordova, E. A. Engel, A. Stefaniuk, F. Paruzzo, A. Hofstetter, M. Ceriotti, L. Emsley, J. Phys. Chem. C 126, 16710-16720 (2022)