Published January 27, 2021 | Version v1
Dataset Open

Structural involvement in the melting of the charge density wave in 1T-TiSe2

  • 1. Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
  • 2. Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
  • 3. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
  • 4. Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zürich, Switzerland
  • 5. Institute for Quantum Electronics, ETH Zürich, Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland
  • 6. Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
  • 7. Diamond Light Source Ltd., Didcot, Oxfordshire OX11 0DE, United Kingdom
  • 8. RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
  • 9. Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
  • 10. Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
  • 11. Ruprecht-Haensel-Labor, Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany
  • 12. SwissFEL, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland

* Contact person

Description

The simultaneous condensation of electronic and structural degrees of freedom gives rise to new states of matter, including superconductivity and charge-density-wave formation. When exciting such a condensed system, it is commonly assumed that the ultrafast laser pulse disturbs primarily the electronic order, which in turn destabilizes the atomic structure. Contrary to this conception, we show here that structural destabilization of few atoms causes macroscopic melting of the charge-density wave in 1T-TiSe2. In detail, we use ultrafast pump-probe non-resonant and resonant X-ray diffraction to track the periodic lattice distortion and the electronic charge density wave in 1T-TiSe2 upon optical excitation. We observe a fluence regime in which the periodic lattice deformation is strongly suppressed but the charge density wave related Se 4p orbital order remains mostly intact. Complete melting of both structural and electronic order occurs 4-5 times faster than expected from a purely electronic charge-screening process, strongly suggesting a structurally assisted weakening of excitonic correlations. Our experimental data provides insight on the intricate coupling between structural and electronic order in stabilizing the periodic-lattice-distortion/charge-density-wave state in 1T-TiSe2. The results further show that electron-phonon-coupling can lead to different, energy dependent phase-transition pathways in condensed matter systems, opening new possibilities in the conception of non-equilibrium phenomena at the ultrafast scale.

Files

File preview

files_description.md

All files

Files (10.9 MiB)

Name Size
md5:13a05008d7445915cbb951351d59bc80
313 Bytes Preview Download
md5:40970106380b3a0df5a89b427c45e3b9
10.9 MiB Preview Download
md5:5376c304bd0fae077b5ba2683434787a
963 Bytes Preview Download

References

Preprint (Preprint in which the data is included.)
M. Burian, M. Porer, J. R. L. Mardegan, V. Esposito, S. Parchenko, B. Burganov, N. Gurung, M. Ramakrishnan, V. Scagnoli, H. Ueda, S. Francoual, F. Fabrizi, Y. Tanaka, T. Togashi, Y. Kubota, M. Yabashi, K. Rossnagel, S. L. Johnson, U. Staub, ArXiv. 2006.13702 (2020).

Journal reference (Article in which the data is included.)
M. Burian, M. Porer, J. R. L. Mardegan, V. Esposito, S. Parchenko, B. Burganov, N. Gurung, M. Ramakrishnan, V. Scagnoli, H. Ueda, S. Francoual, F. Fabrizi, Y. Tanaka, T. Togashi, Y. Kubota, M. Yabashi, K. Rossnagel, S. L. Johnson, U. Staub, Physical Review Research (accepted).