Generating carbon schwarzites via zeolite-templating
Creators
- 1. Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- 2. Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, Valais, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
- 3. School of Physical Science and Technology, ShanghaiTech Universityi, Shanghai 201210, China
- 4. Departmenti of Chemistry, University of California, Berkeley, CA94720
- 5. Theoretische Chemie, Technische Universitat Dresden, 01062 Dresden, Germany
- 6. Dipartimento di Chimica, Universita degli Studi di Milano, 20133 Milano, Italy
- 7. Samara Center for Theoretical Materials Science (SCTMS), Samara State Technical University, Samara 443100, Russia
* Contact person
Description
Zeolite-templated carbons (ZTCs) comprise a relatively recent material class synthesized via the chemical vapor deposition of a carbon-containing precursor on a zeolite template, followed by the removal of the template. We have developed a theoretical framework to generate a ZTC model from any given zeolite structure, which we show can successfully predict the structure of known ZTCs. We use our method to generate a library of ZTCs from all known zeolites, to establish criteria for which zeolites can produce experimentally accessible ZTCs, and to identify over 10 ZTCs that have never before been synthesized. We show that ZTCs partition space into two disjoint labyrinths that can be described by a pair of interpenetrating nets. Since such a pair of nets also describes a triply periodic minimal surface (TPMS), our results establish the relationship between ZTCs and schwarzites—carbon materials with negative Gaussian curvature that resemble TPMSs—linking the research topics and demonstrating that schwarzites should no longer be thought of as purely hypothetical materials.
Files
File preview
files_description.md
All files
References
Journal reference E. Braun, Y. Lee, S. M. Moosavi, S. Barthel, R. Mercado, I. A. Baburin, D. M. Proserpio, B. Smit; PNAS (2018), doi: 10.1073/pnas.1805062115
Journal reference E. Braun, Y. Lee, S. M. Moosavi, S. Barthel, R. Mercado, I. A. Baburin, D. M. Proserpio, B. Smit; PNAS (2018)