Published December 24, 2021 | Version v1
Dataset Open

Discovery of Ĉ₂ rotation anomaly in topological crystalline insulator SrPb

  • 1. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.
  • 2. Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
  • 3. Swiss Light Source, Paul Scherrer Institute, Villigen, PSI, Switzerland.
  • 4. Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.

* Contact person

Description

Topological crystalline insulators (TCIs) are insulating electronic states with nontrivial topology protected by crystalline symmetries. Recently, theory has proposed new classes of TCIs protected by rotation symmetries Ĉ_n, which have surface rotation anomaly evading the fermion doubling theorem, i.e., n instead of 2n Dirac cones on the surface preserving the rotation symmetry. Here, we report the first realization of the Ĉ_2 rotation anomaly in a binary compound SrPb. Our first-principles calculations reveal two massless Dirac fermions protected by the combination of time-reversal symmetry T̂ and Ĉ_2y on the (010) surface. Using angle-resolved photoemission spectroscopy, we identify two Dirac surface states inside the bulk band gap of SrPb, confirming the Ĉ_2 rotation anomaly in the new classes of TCIs. The findings enrich the classification of topological phases, which pave the way for exploring exotic behavior of the new classes of TCIs.

Files

File preview

files_description.md

All files

Files (69.2 MiB)

Name Size
md5:97d4cb3d3a008c235954a76163e53a36
663 Bytes Preview Download
md5:98eafc1fb11b9a5374925402d81dc3c9
1.2 MiB Preview Download
md5:77d96acc909c9997a5fa8cd03a86ef7d
1.1 MiB Preview Download
md5:e3efa6e873f74321a6b733f2d0b4a48a
4.2 MiB Preview Download
md5:20d9605e6916913a16a4b0adf7939274
2.3 MiB Preview Download
md5:9d3a64263fb70f22bb265ab7810a5ac0
2.3 MiB Preview Download
md5:8b5bd70a61bfef5bc51a057dc396cfa8
1.6 MiB Preview Download
md5:d098b702b08a7efe57266d0527d3978b
2.0 MiB Preview Download
md5:2a26f2717a69e3c26724984ac58c77f2
2.3 MiB Preview Download
md5:15bec70130d52be11b5fc210acf9f21d
2.2 MiB Preview Download
md5:e88926b8355277d70aac40a4fb8784d5
4.6 MiB Preview Download
md5:e88926b8355277d70aac40a4fb8784d5
4.6 MiB Preview Download
md5:12c9f95b800b0c611defeef012c2d167
4.6 MiB Preview Download
md5:b5602f80182d5f154be0ede67ae85f7a
4.7 MiB Preview Download
md5:7c6a6e4812baaf1a09cec76e4c4f88e0
4.4 MiB Preview Download
md5:9c941c2717cba387111e451477a8c768
4.6 MiB Preview Download
md5:8ce919a4db8b006366d11923e3deb0da
4.5 MiB Preview Download
md5:3626e54a7ed5abf08b27d7cba828a03b
4.5 MiB Preview Download
md5:b6c2028387415baa8844d7d11df389fc
4.5 MiB Preview Download
md5:85c0ac0cc0218130a793b2ca5037c4e5
4.5 MiB Preview Download
md5:0086cf0b6813533a53560d7b710cc8d3
4.5 MiB Preview Download
md5:3e10e0bddc03c11ddc904876e45f5c0e
255 Bytes Preview Download

References

Journal reference
Wenhui Fan,nature communications 12:2052 (2021), doi: 10.1038/s41467-021-22350-6