Published May 19, 2018 | Version v1
Dataset Open

Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems

  • 1. Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
  • 2. Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge CB21PZ, United Kingdom

* Contact person

Description

Here we present 1,000 structures each of a water monomer, water dimer, Zundel cation and bulk water used to train tensorial machine-learning models in Phys. Rev. Lett. 120, 036002 (2018). The archive entry contains files in extended-XYZ format including the structures and several tensorial properties: for the monomer, dimer and Zundel cation, the dipole moment, polarizability and first hyperpolarizability are included, and for bulk water the dipole moment, polarizability and dielectric tensor are given.

Files

File preview

files_description.md

All files

Files (5.2 MiB)

Name Size
md5:3c7f62169803418f8b9f3a1507899237
447 Bytes Preview Download
md5:2b977c3fc6b23f7ff894777c7bacc9cc
1.3 KiB Preview Download
md5:7f79f3dbc9758210c8f2402e6742663a
3.3 MiB Download
md5:830dc887aa0562669d4eea80db4365f6
674.5 KiB Download
md5:efa6e057541497f86eeffa603cdaa539
583.0 KiB Download
md5:1cee4b970d00be9893f06cbc0bda4adf
701.1 KiB Download

References

Journal reference
A. Grisafi, D. M. Wilkins, G. Csányi, M. Ceriotti, Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems, Phys. Rev. Lett. 120, 036002 (2018), doi: 10.1103/PhysRevLett.120.036002