Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems
- 1. Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- 2. Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge CB21PZ, United Kingdom
* Contact person
Description
Here we present 1,000 structures each of a water monomer, water dimer, Zundel cation and bulk water used to train tensorial machine-learning models in Phys. Rev. Lett. 120, 036002 (2018). The archive entry contains files in extended-XYZ format including the structures and several tensorial properties: for the monomer, dimer and Zundel cation, the dipole moment, polarizability and first hyperpolarizability are included, and for bulk water the dipole moment, polarizability and dielectric tensor are given.
Files
File preview
files_description.md
All files
Files
(5.2 MiB)
Name | Size | |
---|---|---|
md5:3c7f62169803418f8b9f3a1507899237
|
447 Bytes | Preview Download |
md5:2b977c3fc6b23f7ff894777c7bacc9cc
|
1.3 KiB | Preview Download |
md5:7f79f3dbc9758210c8f2402e6742663a
|
3.3 MiB | Download |
md5:830dc887aa0562669d4eea80db4365f6
|
674.5 KiB | Download |
md5:efa6e057541497f86eeffa603cdaa539
|
583.0 KiB | Download |
md5:1cee4b970d00be9893f06cbc0bda4adf
|
701.1 KiB | Download |
References
Journal reference A. Grisafi, D. M. Wilkins, G. Csányi, M. Ceriotti, Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems, Phys. Rev. Lett. 120, 036002 (2018), doi: 10.1103/PhysRevLett.120.036002