Publication date: Aug 30, 2019
Maximally-localised Wannier functions (MLWFs) are routinely used to compute from first- principles advanced materials properties that require very dense Brillouin zone integration and to build accurate tight-binding models for scale-bridging simulations. At the same time, high- thoughput (HT) computational materials design is an emergent field that promises to accelerate the reliable and cost-effective design and optimisation of new materials with target properties. The use of MLWFs in HT workflows has been hampered by the fact that generating MLWFs automatically and robustly without any user intervention and for arbitrary materials is, in general, very challenging. We address this problem directly by proposing a procedure for automatically generating MLWFs for HT frameworks. Our approach is based on the selected columns of the density matrix method (SCDM) and we present the details of its implementation in an AiiDA workflow. We apply our approach to a dataset of 200 bulk crystalline materials that span a wide structural and chemical space. We assess the quality of our MLWFs in terms of the accuracy of the band-structure interpolation that they provide as compared to the band-structure obtained via full first-principles calculations. Finally, we provide here a downloadable virtual machine that allows to reproduce the results of this paper, including all first-principles and atomistic simulations as well as the computational workflows.
No Explore or Discover sections associated with this archive record.
File name | Size | Description |
---|---|---|
README.txt
MD5md5:141431ba92aed7586e4505f3b94f601d
|
1.4 KiB | General information and instructions about this entry |
xsf_insulators.tar.gz
MD5md5:ca59da4cbc07001d89aed01b20d9c097
|
17.7 KiB | Crystal structures (XSF format) of the 81 insulating systems used in the paper when considering the valence bands only |
xsf.tar.gz
MD5md5:234323af93a2479729ba9b9f233930f7
|
30.1 KiB | Crystal structures (XSF format) of the 200 systems used in the paper (insulators including conduction bands, or metals) |
README-virtual-machine.txt
MD5md5:a04e5cec97ea64b1784ba8c60a072dbe
|
4.6 KiB | README.txt on how to use the Virtual Machine (based on a modified version of the Quantum Mobile) |
wannierising_machine_19.07.ova
MD5md5:959502fc0b894c5532d45594e6f9656f
|
3.2 GiB | VirtualBox image to install the virtual machine to run automatic Wannierisation |
wannierising_machine_19.07_ansible_scripts.tar.gz
MD5md5:9007aa73602d2539af4316cf77b77f05
|
268.3 MiB | Ansible scripts to regenerate the virtual machine from scratch |
LICENSE.txt
MD5md5:809241d8b968e749d93f95131f697efd
|
649 Bytes | License information |
2020.60 (version v3) | Jun 21, 2020 | DOI10.24435/materialscloud:dd-nz |
2019.0044/v2 (version v2) | Nov 25, 2019 | DOI10.24435/materialscloud:2019.0044/v2 |
2019.0044/v1 (version v1) [This version] | Aug 30, 2019 | DOI10.24435/materialscloud:2019.0044/v1 |