Molecular Recognition and Specificity of Biomolecules to Titanium Dioxide from MD Simulations
Creators
- 1. Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- 2. Department of Chemical Engineering, University of Washington, Seattle, WA, USA
* Contact person
Description
Titania (TiO2) is used extensively in biomedical applications; efforts to boost the biocompatibility of TiO2 include coating it with the titania binding hexamer, RKLPDA. To understand the binding mechanism of this peptide, we employ molecular dynamics simulations enhanced by metadynamics to study three amino acids present in the peptide – arginine (R), lysine (K), and aspartate (D), on four TiO2 variants that have different degrees of surface hydroxyl groups. We find that binding is a function of both sidechain charge and structure, with R binding to all four surfaces, whereas the affinity of K and D is dependent on the distribution of hydroxyl groups. Informed by this, we study the binding of the titania binding hexamer and 12mer (RKLPDAPGMHTW) on two of the four surfaces, and we see strong correlations between the binding free energy and the primary binding residues, in agreement with prior experiments and simulations. We propose that the discrepancies observed in prior work stem from distribution of surface hydroxyl groups that may be difficult to precisely control on the TiO2 interface.
Files
File preview
files_description.md
All files
References
Journal reference J. Sampath, A. Kullman, R. Gebhart, G. Drobny, J. Pfaendtner, npj Comp. Mat. 6, 34 (2020), doi: 10.1038/s41524-020-0288-7