Published December 22, 2020 | Version v1
Dataset Open

Tailoring interfacial properties in CaVO3 thin films and heterostructures with SrTiO3 and LaAlO3: A DFT+DMFT study

  • 1. Materials Theory, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093, Zürich, Switzerland

* Contact person

Description

In this paper we use density functional theory combined with dynamical mean-field theory (DFT+DMFT) to study interface effects between the correlated metal CaVO3 and the two typical substrate materials SrTiO3 and LaAlO3. We find that the CaVO3/SrTiO3 interface has only a marginal influence on the CaVO3 thin film, with the dominant effect being the (bulklike) epitaxial strain imposed by the large lattice mismatch, rendering the CaVO3 film insulating due to the enhanced orbital polarization related to the strong level splitting between the t2g orbitals. In contrast, at the polar CaVO3/LaAlO3 interface, the presence of the interface can have a huge effect on the physical properties, depending both on the specific interface termination and on the specific boundary conditions imposed by the multilayer geometry. We compare three approaches to modeling the CaVO3/LaAlO3 interface, all of which impose a different set of (electrostatic) boundary conditions. Our results demonstrate that different substrates, interface terminations, and electrostatic boundary conditions can drastically affect the properties of thin-film heterostructures, indicating the potential tunability of the interfacial properties via multilayer engineering.

Files

File preview

files_description.md

All files

Files (293.9 KiB)

Name Size
md5:e4df7fe0827c9d48859dda6f6a497e7d
452 Bytes Preview Download
md5:8558eb71e40046fa34047ea78d23919e
291.8 KiB Download
md5:f2be6f675c718b646165da65b18040ef
1.7 KiB Preview Download

References

Journal reference (Paper in which the data is discussed)
S. Beck, and C. Ederer, Phys. Rev. Materials 4, 125002 (2020), doi: 10.1103/PhysRevMaterials.4.125002

Preprint (Preprint where the data is discussed)
S. Beck, and C. Ederer, arXiv: 2005.11809