×

Indexed by

Controlled selectivity for ethanol steam reforming reaction over doped CeO2 surfaces: The role of gallium

Julia Vecchietti1, Pablo Lustemberg2,3*, Esteban L. Fornero1, Mónica Calatayud4, Sebastián E. Collins1, Susanne Mohr5, M. Verónica Ganduglia-Pirovano2, Jörg Libuda5, Adrian L. Bonivardi1,6

1 Instituto de Desarrollo Tecnológico para la Industria Química, UNL-CONICET, 3000 Santa Fe, Argentina

2 Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049, Madrid, Spain

3 Instituto de Física Rosario (IFIR), CONICET-UNR, Bv. 27 de Febrero 210bis, S2000EZP Rosario, Santa Fe, Argentina

4 Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, F. 75005, Paris, France

5 Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058, Erlangen, Germany

6 Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina

* Corresponding authors emails: p.lustemberg@csic.es
DOI10.24435/materialscloud:jc-rm [version v1]

Publication date: May 28, 2020

How to cite this record

Julia Vecchietti, Pablo Lustemberg, Esteban L. Fornero, Mónica Calatayud, Sebastián E. Collins, Susanne Mohr, M. Verónica Ganduglia-Pirovano, Jörg Libuda, Adrian L. Bonivardi, Controlled selectivity for ethanol steam reforming reaction over doped CeO2 surfaces: The role of gallium, Materials Cloud Archive 2020.52 (2020), doi: 10.24435/materialscloud:jc-rm.

Description

The ethanol steam reforming reaction, together with the adsorption and decomposition of ethanol was studied on CeO2 and gallium-doped ceria (CeGaOx) by a combined experimental and theoretical approach using infrared spectroscopy (IR), mass spectrometry (MS) and density functional theory (DFT) calculations. At 100 °C, different types of monodentate ethoxy species were identified as standing-up (SU) on Ce4+ and lying-down (LD) on Ce4+ and Ga3+, with the alkyl chain more perpendicular or parallel to the surface, respectively. It is suggested that the incorporation of Ga into the ceria lattice changes the decomposition pathway of LD species, which converts to acetate instead of ethylene, attributed to the increased lattice oxygen lability in the Ce―O―Ga interface upon doping and the propensity to form Ga―H surface species. Under ethanol steam reforming conditions, Ga doping of ceria-based materials has a drastic effect by improving the H2:CO2 ratio, changing the product distribution and reducing coke formation.

Materials Cloud sections using this data

No Explore or Discover sections associated with this archive record.

Files

File name Size Description
README.txt
MD5md5:365dc934acd50dcf88a9557c6b33de13
1.6 KiB README text that includes the information of the uploaded files
references.zip
MD5md5:b37c87195f0d572b0864aeefcd6ba2ae
4.5 MiB DFT relaxed states corresponding to ethanol and water in gas phase and more (see README.txt)
CeO2.non-hydroxylated.surf.zip
MD5md5:5dc14b42abe4115b832bc74dd67182c9
2.6 MiB DFT calculations corresponding to the models shown in Figure S6 (3 states): LD, SU and SU.tridentate
CeO2.hydroxylated.surf.zip
MD5md5:02b56379c700b0624d6cfe250e994d52
1.4 MiB DFT calculations corresponding to the models shown in Figure 4 (2 states): LD and SU.
CeGaO2.hydroxylated.surf.zip
MD5md5:4877c3fda525b0d7521c55448a49ffb2
66.0 MiB DFT calculations corresponding to the models shown in Figure S9 (3 states): LD.H.Ce.Ga, LD.H.Ga (also Figure 4c) and SU.H.Ga

License

Files and data are licensed under the terms of the following license: Creative Commons Attribution 4.0 International.
Metadata, except for email addresses, are licensed under the Creative Commons Attribution Share-Alike 4.0 International license.

Keywords

bioethanol hydrogen production gallia deactivation coke precursors PRACE

Version history:

2020.52 (version v1) [This version] May 28, 2020 DOI10.24435/materialscloud:jc-rm