Published May 28, 2020 | Version v1
Dataset Open

Controlled selectivity for ethanol steam reforming reaction over doped CeO2 surfaces: The role of gallium

  • 1. Instituto de Desarrollo Tecnológico para la Industria Química, UNL-CONICET, 3000 Santa Fe, Argentina
  • 2. Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049, Madrid, Spain
  • 3. Instituto de Física Rosario (IFIR), CONICET-UNR, Bv. 27 de Febrero 210bis, S2000EZP Rosario, Santa Fe, Argentina
  • 4. Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, F. 75005, Paris, France
  • 5. Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058, Erlangen, Germany
  • 6. Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina

* Contact person

Description

The ethanol steam reforming reaction, together with the adsorption and decomposition of ethanol was studied on CeO2 and gallium-doped ceria (CeGaOx) by a combined experimental and theoretical approach using infrared spectroscopy (IR), mass spectrometry (MS) and density functional theory (DFT) calculations. At 100 °C, different types of monodentate ethoxy species were identified as standing-up (SU) on Ce4+ and lying-down (LD) on Ce4+ and Ga3+, with the alkyl chain more perpendicular or parallel to the surface, respectively. It is suggested that the incorporation of Ga into the ceria lattice changes the decomposition pathway of LD species, which converts to acetate instead of ethylene, attributed to the increased lattice oxygen lability in the Ce―O―Ga interface upon doping and the propensity to form Ga―H surface species. Under ethanol steam reforming conditions, Ga doping of ceria-based materials has a drastic effect by improving the H2:CO2 ratio, changing the product distribution and reducing coke formation.

Files

File preview

files_description.md

All files

Files (74.4 MiB)

Name Size
md5:41d624565b8a49f0b3c84bd436afb119
735 Bytes Preview Download
md5:4877c3fda525b0d7521c55448a49ffb2
66.0 MiB Preview Download
md5:02b56379c700b0624d6cfe250e994d52
1.4 MiB Preview Download
md5:5dc14b42abe4115b832bc74dd67182c9
2.6 MiB Preview Download
md5:365dc934acd50dcf88a9557c6b33de13
1.6 KiB Preview Download
md5:b37c87195f0d572b0864aeefcd6ba2ae
4.5 MiB Preview Download

References

Preprint (Preprint where the data is discussed)
J. Vecchietti, P. Lustemberg, E. L. Fornero, M. Calatayud, S. E. Collins, S. Mohr, M. V. Ganduglia-Pirovano, J. Libuda, A. L. Bonivardi, ChemRxiv Preprint. (2020), doi: 10.26434/chemrxiv.12272192.v1

Journal reference (Paper where the data is discussed)
J. Vecchietti, P. Lustemberg, E. L. Fornero, M. Calatayud, S. E. Collins, S. Mohr, M. V. Ganduglia-Pirovano, J. Libuda, A. L. Bonivardi, Appl. Catal. B, in press (2020), doi: 10.1016/j.apcatb.2020.119103

Journal reference (Paper where the data is discussed)
J. Vecchietti, P. Lustemberg, E. L. Fornero, M. Calatayud, S. E. Collins, S. Mohr, M. V. Ganduglia-Pirovano, J. Libuda, A. L. Bonivardi, Appl. Catal. B, in press (2020)