Controlled selectivity for ethanol steam reforming reaction over doped CeO2 surfaces: The role of gallium
Creators
- 1. Instituto de Desarrollo Tecnológico para la Industria Química, UNL-CONICET, 3000 Santa Fe, Argentina
- 2. Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049, Madrid, Spain
- 3. Instituto de Física Rosario (IFIR), CONICET-UNR, Bv. 27 de Febrero 210bis, S2000EZP Rosario, Santa Fe, Argentina
- 4. Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, F. 75005, Paris, France
- 5. Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058, Erlangen, Germany
- 6. Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina
* Contact person
Description
The ethanol steam reforming reaction, together with the adsorption and decomposition of ethanol was studied on CeO2 and gallium-doped ceria (CeGaOx) by a combined experimental and theoretical approach using infrared spectroscopy (IR), mass spectrometry (MS) and density functional theory (DFT) calculations. At 100 °C, different types of monodentate ethoxy species were identified as standing-up (SU) on Ce4+ and lying-down (LD) on Ce4+ and Ga3+, with the alkyl chain more perpendicular or parallel to the surface, respectively. It is suggested that the incorporation of Ga into the ceria lattice changes the decomposition pathway of LD species, which converts to acetate instead of ethylene, attributed to the increased lattice oxygen lability in the Ce―O―Ga interface upon doping and the propensity to form Ga―H surface species. Under ethanol steam reforming conditions, Ga doping of ceria-based materials has a drastic effect by improving the H2:CO2 ratio, changing the product distribution and reducing coke formation.
Files
File preview
files_description.md
All files
Files
(74.4 MiB)
Name | Size | |
---|---|---|
md5:41d624565b8a49f0b3c84bd436afb119
|
735 Bytes | Preview Download |
md5:4877c3fda525b0d7521c55448a49ffb2
|
66.0 MiB | Preview Download |
md5:02b56379c700b0624d6cfe250e994d52
|
1.4 MiB | Preview Download |
md5:5dc14b42abe4115b832bc74dd67182c9
|
2.6 MiB | Preview Download |
md5:365dc934acd50dcf88a9557c6b33de13
|
1.6 KiB | Preview Download |
md5:b37c87195f0d572b0864aeefcd6ba2ae
|
4.5 MiB | Preview Download |
References
Preprint (Preprint where the data is discussed) J. Vecchietti, P. Lustemberg, E. L. Fornero, M. Calatayud, S. E. Collins, S. Mohr, M. V. Ganduglia-Pirovano, J. Libuda, A. L. Bonivardi, ChemRxiv Preprint. (2020), doi: 10.26434/chemrxiv.12272192.v1
Journal reference (Paper where the data is discussed) J. Vecchietti, P. Lustemberg, E. L. Fornero, M. Calatayud, S. E. Collins, S. Mohr, M. V. Ganduglia-Pirovano, J. Libuda, A. L. Bonivardi, Appl. Catal. B, in press (2020), doi: 10.1016/j.apcatb.2020.119103
Journal reference (Paper where the data is discussed) J. Vecchietti, P. Lustemberg, E. L. Fornero, M. Calatayud, S. E. Collins, S. Mohr, M. V. Ganduglia-Pirovano, J. Libuda, A. L. Bonivardi, Appl. Catal. B, in press (2020)