In situ inorganic conductive network enables superior high-voltage operation of single-crystal Ni-rich cathode
Creators
- 1. School of Metallurgy and Environment, Central South University, Changsha 410083, P.R. China
- 2. Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- 3. School of Energy Research, Xiamen University, Xiamen, Fujian 361005, P.R. China
- 4. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- 5. High Performance Computing Department, National Supercomputing Center in Shenzhen, Shenzhen, Guangdong 518055, China
* Contact person
Description
High nickel content in LiNixCoyMnzO2 (NCM, x ≥ 0.8, x + y + z = 1) layered cathode material allows high energy density in lithium-ion batteries (LIBs). However, Ni-rich NCM cathodes suffer from performance degradation, mechanical and structural instability upon prolonged cell cycling. Although the use of single-crystal Ni-rich NCM can mitigate these drawbacks, the ion-diffusion in large single-crystal particles hamper its rate capability. Herein, we report a strategy to construct an in situ Li1.4Y0.4Ti1.6(PO4)3 (LYTP) ion/electron conductive network which interconnects single-crystal LiNi0.88Co0.09Mn0.03O2 (SC-NCM88) particles. The LYTP network facilitates the lithium-ion transport between SC-NCM88 particles, mitigates mechanical instability and prevents detrimental crystalline phase transformation. When used in combination with a Li metal anode, the LYTP-containing SC-NCM88-based cathode enables a coin cell capacity of 130 mAh g-1 after 500 cycles at 5 C rate in the 2.75-4.4 V range at 25 °C. Tests in Li-ion pouch cell configuration (i.e., graphite used as negative electrode active material) demonstrate capacity retention of 85% after 1000 cycles at 0.5 C in the 2.75-4.4 V range at 25 °C for the LYTP-containing SC-NCM88-based positive electrode.
Files
File preview
files_description.md
All files
Files
(9.4 MiB)
Name | Size | |
---|---|---|
md5:fef9e4cbd08773e82d5bb63b84cba611
|
3.3 KiB | Preview Download |
md5:23c39d7abd4661567c958179590533aa
|
1.5 MiB | Preview Download |
md5:2b6b1d3324efccaec69827f3e8ce0a57
|
344.4 KiB | Preview Download |
md5:0861947ae32d47451ca938628f09bb1a
|
829.1 KiB | Download |
md5:18c57a27372f573405be1cdf1a5358cd
|
2.4 MiB | Download |
md5:a92e413901278173cbad120637143668
|
95.2 KiB | Download |
md5:383ff725236fa464e329a410d94d4575
|
2.9 MiB | Download |
md5:2eceda7cd5c5579cc1b789635d4f9eec
|
504.8 KiB | Download |
md5:013adbef6f974d5a4952c1edd8a2906d
|
348.9 KiB | Download |
md5:e3dafdee822e1c16ac74a4c7e1855f19
|
622.6 KiB | Preview Download |
References
Journal reference (Paper in which this work is described) X. Fan, X. Ou, W. Zhao, Y. Liu, B. Zhang, J. Zhang, L. Zou, L. Seidl, Y. Li, G. Hu, C. Battaglia, Y. Yang, Nature Communications (accepted)
Journal reference Lu J., Chen Z., Ma Z., Pan F., Curtiss L.A. & Amine K. Nat. Nanotechnol 11, 1031-1039 (2016).
Journal reference Yan P., et al. Nat. Energy 3, 600-605 (2018).
Journal reference Liu W., et al. Chem. Int. Ed. 54, 4440-4457 (2015).
Journal reference Deng J., Bae C., Denlinger A. & Miller T. Joule 4, 511-515 (2020).
Journal reference Kim J., Lee H., Cha H., Yoon M., Park M. & Cho J. Adv. Energy Mater. 8, 1702028 (2018).
Journal reference Xia Y., Zheng J., Wang C. & Gu M. Nano Energy 49, 434-452 (2018)
Journal reference Sun H.H. et al. ACS Energy Lett. 5, 1136-1146 (2020).
Journal reference Yan P., Zheng J., Gu M., Xiao J., Zhang J.G. & Wang C.M. Nat. Commun. 8, 14101 (2017).
Journal reference Liu H. et al. Nano Lett. 17, 3452-3457 (2017).
Journal reference Nam G.W. et al. ACS Energy Lett. 4, 2995-3001 (2019).
Journal reference Hashigami S. et al. ACS Appl. Mater. Interfaces 11, 39910-39920 (2019).
Journal reference Li H., Li J., Zaker N., Zhang N., Botton G.A. & Dahn J.R. J. Electrochem. Soc. 166, A1956-A1963 (2019).
Journal reference Fan X. et al. Chem. Eng. J. 393, 124709 (2020).
Journal reference Liu G. et al. J. Electrochem. Soc. 165, A3040-A3047 (2018).
Journal reference Fan X. et al. Nano Energy 70, 104450 (2020).
Journal reference Lu Y. et al. Adv. Mater. Interfaces 6, 1901368 (2019).
Journal reference Ge M, et al. Angew Chem Int Ed 133, (2021). DOI: 10.1002/anie.202012773.
Journal reference Maleki Kheimeh Sari H. & Li X. Adv. Energy Mater. 9, 1901597 (2019).
Journal reference Qian G. et al. Energy Storage Mater. 27, 140-149 (2020).
Journal reference Zou L. et al. Chem. Mater. 32, 2884-2892 (2020).
Journal reference Xu Z., Rahman M.M., Mu L., Liu Y. & Lin F. J. Mater. Chem. A 6, 21859-21884 (2018).
Journal reference Cheng J, Sivonxay E, Persson KA. ACS Appl. Mater. Interfaces 12, 35748-35756 (2020).
Journal reference Rosy, et al. Energy Storage Mater 33, 268-275 (2020).
Journal reference Kazyak E, et al. Chem. Mater. 29, 3785-3792 (2017).
Journal reference Liang J.Y. et al. J. Am. Chem. Soc. 140, 6767-6770 (2018).
Journal reference Choi J.-w. & Lee J.-W. J. Power Sources 307, 63-68 (2016).
Journal reference Rossbach A., Tietz F. & Grieshammer S. J Power Sources 391, 1-9 (2018).
Journal reference Yang H. et al. Adv. Funct. Mater. 29, 1808825 (2019).
Journal reference Aono H., Sugimoto E., Sadaoka Y., Imanaka N. & Adachi G. J. Electrochem. Soc. 136, 590-591 (1989).
Journal reference Aono H., Sugimoto E., Sadaoka Y., Imanaka N. & Adachi G. J. Electrochem. Soc. 137, 1023-1027 (1990).
Journal reference Wang S., Yan M., Li Y., Vinado C. & Yang J. J. Power Sources 393, 75-82 (2018).
Journal reference Xie Q., Li W. & Manthiram A. Chem. Mater. 31, 938-946 (2019).
Journal reference Ryu H.-H., Park K.-J., Yoon C.S. & Sun Y.-K. Chem. Mater. 30, 1155-1163 (2018).
Journal reference Cheng X., Zheng J., Lu J., Li Y., Yan P. & Zhang Y. Nano Energy 62, 30-37 (2019).
Journal reference Kim U.-H., Kuo L.-Y., Kaghazchi P., Yoon C.S. & Sun Y.-K. ACS Energy Lett. 4, 576-582 (2019).
Journal reference Oh P., Oh S.-M., Li W., Myeong S. & Cho J. Manthiram A. Adv. Sci. 3, 1600184 (2016).
Journal reference Liao J.Y., Oh S.M. & Manthiram A. ACS Appl. Mater. Interfaces 8, 24543-24549 (2016).
Journal reference Röser S. et al. Chem Mater 29, 7733-7739 (2017).
Journal reference Ryu H.-H. et al. Mater. Today 36, 73-82 (2020)
Journal reference Bianchini M., Roca-Ayats M., Hartmann P., Brezesinski T. & Janek J. Angew Chem. Int. Ed. 58, 10434-10458 (2019).
Journal reference Xu J., Lin F., Doeff M.M. & Tong W. J. Mater. Chem. A 5, 874-901 (2017).
Journal reference Xu G.-L. et al. Nat. Energy 4, 484-494 (2019).
Journal reference Xu C, et al. Nat. Mater. 20, 84-92 (2021).
Journal reference Xu C, Reeves PJ, Jacquet Q, Grey CP. Adv Energy Mater 11, 2003404 (2021).
Journal reference Liu Z. et al. ChemSusChem 9, 2122-2128 (2016).
Journal reference Breuer O. et al. ACS Appl. Mater. Interfaces 10, 29608-29621 (2018).
Journal reference Li W., Dolocan A., Li J., Xie Q. & Manthiram A. Adv. Energy Mater. 9, 1901152 (2019).
Journal reference Deng T. et al. Joule 3, 2550-2564 (2019).
Journal reference Li J. & Manthiram A. Adv. Energy Mater. 9, 1902731 (2019).
Journal reference Yang S. Q. et al. Nano Energy 63, 103889 (2019).
Journal reference Li J., Li W., Wang S., Jarvis K., Yang J. & Manthiram A. Chem. Mater. 30, 3101-3109 (2018).
Journal reference Liu Y. et al. Nano Energy 65, 104043 (2019).
Journal reference Zhang J., Zhang J., Ou X., Wang C., Peng C. & Zhang B. ACS Appl. Mater. Interfaces 11, 15507-15516 (2019).
Journal reference Li W, et al. Adv. Energy Mater. 8, 1703154 (2018).
Journal reference Zhao W. et al. Adv. Energy Mater. 8, 1800297 (2018).
Journal reference Zhang S., Ma J., Hu Z., Cui G. & Chen L. Chem. Mater. 31, 6033-6065 (2019).
Journal reference Kresse G. & Joubert D. Phys. Rev. B 59, 1758-1775 (1999).
Journal reference Floris A., de Gironcoli S., Gross E.K.U. & Cococcioni M. Phys. Rev. B 84, 161102 (2011).
Journal reference Bajdich M., Garcia-Mota M., Vojvodic A., Norskov J.K. & Bell A.T. J. Am. Chem. Soc. 135, 13521-13530 (2013)