Published July 21, 2021 | Version v1
Dataset Open

In situ inorganic conductive network enables superior high-voltage operation of single-crystal Ni-rich cathode

  • 1. School of Metallurgy and Environment, Central South University, Changsha 410083, P.R. China
  • 2. Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
  • 3. School of Energy Research, Xiamen University, Xiamen, Fujian 361005, P.R. China
  • 4. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
  • 5. High Performance Computing Department, National Supercomputing Center in Shenzhen, Shenzhen, Guangdong 518055, China

* Contact person

Description

High nickel content in LiNixCoyMnzO2 (NCM, x ≥ 0.8, x + y + z = 1) layered cathode material allows high energy density in lithium-ion batteries (LIBs). However, Ni-rich NCM cathodes suffer from performance degradation, mechanical and structural instability upon prolonged cell cycling. Although the use of single-crystal Ni-rich NCM can mitigate these drawbacks, the ion-diffusion in large single-crystal particles hamper its rate capability. Herein, we report a strategy to construct an in situ Li1.4Y0.4Ti1.6(PO4)3 (LYTP) ion/electron conductive network which interconnects single-crystal LiNi0.88Co0.09Mn0.03O2 (SC-NCM88) particles. The LYTP network facilitates the lithium-ion transport between SC-NCM88 particles, mitigates mechanical instability and prevents detrimental crystalline phase transformation. When used in combination with a Li metal anode, the LYTP-containing SC-NCM88-based cathode enables a coin cell capacity of 130 mAh g-1 after 500 cycles at 5 C rate in the 2.75-4.4 V range at 25 °C. Tests in Li-ion pouch cell configuration (i.e., graphite used as negative electrode active material) demonstrate capacity retention of 85% after 1000 cycles at 0.5 C in the 2.75-4.4 V range at 25 °C for the LYTP-containing SC-NCM88-based positive electrode.

Files

File preview

files_description.md

All files

Files (9.4 MiB)

Name Size
md5:fef9e4cbd08773e82d5bb63b84cba611
3.3 KiB Preview Download
md5:23c39d7abd4661567c958179590533aa
1.5 MiB Preview Download
md5:2b6b1d3324efccaec69827f3e8ce0a57
344.4 KiB Preview Download
md5:0861947ae32d47451ca938628f09bb1a
829.1 KiB Download
md5:18c57a27372f573405be1cdf1a5358cd
2.4 MiB Download
md5:a92e413901278173cbad120637143668
95.2 KiB Download
md5:383ff725236fa464e329a410d94d4575
2.9 MiB Download
md5:2eceda7cd5c5579cc1b789635d4f9eec
504.8 KiB Download
md5:013adbef6f974d5a4952c1edd8a2906d
348.9 KiB Download
md5:e3dafdee822e1c16ac74a4c7e1855f19
622.6 KiB Preview Download

References

Journal reference (Paper in which this work is described)
X. Fan, X. Ou, W. Zhao, Y. Liu, B. Zhang, J. Zhang, L. Zou, L. Seidl, Y. Li, G. Hu, C. Battaglia, Y. Yang, Nature Communications (accepted)

Journal reference
Lu J., Chen Z., Ma Z., Pan F., Curtiss L.A. & Amine K. Nat. Nanotechnol 11, 1031-1039 (2016).

Journal reference
Yan P., et al. Nat. Energy 3, 600-605 (2018).

Journal reference
Liu W., et al. Chem. Int. Ed. 54, 4440-4457 (2015).

Journal reference
Deng J., Bae C., Denlinger A. & Miller T. Joule 4, 511-515 (2020).

Journal reference
Kim J., Lee H., Cha H., Yoon M., Park M. & Cho J. Adv. Energy Mater. 8, 1702028 (2018).

Journal reference
Xia Y., Zheng J., Wang C. & Gu M. Nano Energy 49, 434-452 (2018)

Journal reference
Sun H.H. et al. ACS Energy Lett. 5, 1136-1146 (2020).

Journal reference
Yan P., Zheng J., Gu M., Xiao J., Zhang J.G. & Wang C.M. Nat. Commun. 8, 14101 (2017).

Journal reference
Liu H. et al. Nano Lett. 17, 3452-3457 (2017).

Journal reference
Nam G.W. et al. ACS Energy Lett. 4, 2995-3001 (2019).

Journal reference
Hashigami S. et al. ACS Appl. Mater. Interfaces 11, 39910-39920 (2019).

Journal reference
Li H., Li J., Zaker N., Zhang N., Botton G.A. & Dahn J.R. J. Electrochem. Soc. 166, A1956-A1963 (2019).

Journal reference
Fan X. et al. Chem. Eng. J. 393, 124709 (2020).

Journal reference
Liu G. et al. J. Electrochem. Soc. 165, A3040-A3047 (2018).

Journal reference
Fan X. et al. Nano Energy 70, 104450 (2020).

Journal reference
Lu Y. et al. Adv. Mater. Interfaces 6, 1901368 (2019).

Journal reference
Ge M, et al. Angew Chem Int Ed 133, (2021). DOI: 10.1002/anie.202012773.

Journal reference
Maleki Kheimeh Sari H. & Li X. Adv. Energy Mater. 9, 1901597 (2019).

Journal reference
Qian G. et al. Energy Storage Mater. 27, 140-149 (2020).

Journal reference
Zou L. et al. Chem. Mater. 32, 2884-2892 (2020).

Journal reference
Xu Z., Rahman M.M., Mu L., Liu Y. & Lin F. J. Mater. Chem. A 6, 21859-21884 (2018).

Journal reference
Cheng J, Sivonxay E, Persson KA. ACS Appl. Mater. Interfaces 12, 35748-35756 (2020).

Journal reference
Rosy, et al. Energy Storage Mater 33, 268-275 (2020).

Journal reference
Kazyak E, et al. Chem. Mater. 29, 3785-3792 (2017).

Journal reference
Liang J.Y. et al. J. Am. Chem. Soc. 140, 6767-6770 (2018).

Journal reference
Choi J.-w. & Lee J.-W. J. Power Sources 307, 63-68 (2016).

Journal reference
Rossbach A., Tietz F. & Grieshammer S. J Power Sources 391, 1-9 (2018).

Journal reference
Yang H. et al. Adv. Funct. Mater. 29, 1808825 (2019).

Journal reference
Aono H., Sugimoto E., Sadaoka Y., Imanaka N. & Adachi G. J. Electrochem. Soc. 136, 590-591 (1989).

Journal reference
Aono H., Sugimoto E., Sadaoka Y., Imanaka N. & Adachi G. J. Electrochem. Soc. 137, 1023-1027 (1990).

Journal reference
Wang S., Yan M., Li Y., Vinado C. & Yang J. J. Power Sources 393, 75-82 (2018).

Journal reference
Xie Q., Li W. & Manthiram A. Chem. Mater. 31, 938-946 (2019).

Journal reference
Ryu H.-H., Park K.-J., Yoon C.S. & Sun Y.-K. Chem. Mater. 30, 1155-1163 (2018).

Journal reference
Cheng X., Zheng J., Lu J., Li Y., Yan P. & Zhang Y. Nano Energy 62, 30-37 (2019).

Journal reference
Kim U.-H., Kuo L.-Y., Kaghazchi P., Yoon C.S. & Sun Y.-K. ACS Energy Lett. 4, 576-582 (2019).

Journal reference
Oh P., Oh S.-M., Li W., Myeong S. & Cho J. Manthiram A. Adv. Sci. 3, 1600184 (2016).

Journal reference
Liao J.Y., Oh S.M. & Manthiram A. ACS Appl. Mater. Interfaces 8, 24543-24549 (2016).

Journal reference
Röser S. et al. Chem Mater 29, 7733-7739 (2017).

Journal reference
Ryu H.-H. et al. Mater. Today 36, 73-82 (2020)

Journal reference
Bianchini M., Roca-Ayats M., Hartmann P., Brezesinski T. & Janek J. Angew Chem. Int. Ed. 58, 10434-10458 (2019).

Journal reference
Xu J., Lin F., Doeff M.M. & Tong W. J. Mater. Chem. A 5, 874-901 (2017).

Journal reference
Xu G.-L. et al. Nat. Energy 4, 484-494 (2019).

Journal reference
Xu C, et al. Nat. Mater. 20, 84-92 (2021).

Journal reference
Xu C, Reeves PJ, Jacquet Q, Grey CP. Adv Energy Mater 11, 2003404 (2021).

Journal reference
Liu Z. et al. ChemSusChem 9, 2122-2128 (2016).

Journal reference
Breuer O. et al. ACS Appl. Mater. Interfaces 10, 29608-29621 (2018).

Journal reference
Li W., Dolocan A., Li J., Xie Q. & Manthiram A. Adv. Energy Mater. 9, 1901152 (2019).

Journal reference
Deng T. et al. Joule 3, 2550-2564 (2019).

Journal reference
Li J. & Manthiram A. Adv. Energy Mater. 9, 1902731 (2019).

Journal reference
Yang S. Q. et al. Nano Energy 63, 103889 (2019).

Journal reference
Li J., Li W., Wang S., Jarvis K., Yang J. & Manthiram A. Chem. Mater. 30, 3101-3109 (2018).

Journal reference
Liu Y. et al. Nano Energy 65, 104043 (2019).

Journal reference
Zhang J., Zhang J., Ou X., Wang C., Peng C. & Zhang B. ACS Appl. Mater. Interfaces 11, 15507-15516 (2019).

Journal reference
Li W, et al. Adv. Energy Mater. 8, 1703154 (2018).

Journal reference
Zhao W. et al. Adv. Energy Mater. 8, 1800297 (2018).

Journal reference
Zhang S., Ma J., Hu Z., Cui G. & Chen L. Chem. Mater. 31, 6033-6065 (2019).

Journal reference
Kresse G. & Joubert D. Phys. Rev. B 59, 1758-1775 (1999).

Journal reference
Floris A., de Gironcoli S., Gross E.K.U. & Cococcioni M. Phys. Rev. B 84, 161102 (2011).

Journal reference
Bajdich M., Garcia-Mota M., Vojvodic A., Norskov J.K. & Bell A.T. J. Am. Chem. Soc. 135, 13521-13530 (2013)