Unidirectional Kondo scattering in layered NbS2
Creators
- 1. Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- 2. Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- 3. Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
- 4. Laboratoire National des Champs Magnétiques Intenses (LNCMI-EMFL), CNRS, UGA, UPS, INSA, Grenoble/Toulouse, France
- 5. Department of Physics, University of Fribourg, CH-1700, Fribourg, Switzerland
- 6. Department of Physics, Humboldt University of Berlin, Berlin, 12489, Germany
- 7. National Center for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- 8. Stavropoulos Center for Complex Quantum Matter, University of Notre Dame, Notre Dame, 46556, IN, USA
* Contact person
Description
Crystalline defects can modify quantum interactions in solids, causing unintuitive, even favourable, properties such as quantum Hall effect or superconducting vortex pinning. Here we present another example of this notion—an unexpected unidirectional Kondo scattering in single crystals of 2H-NbS2. This manifests as a pronounced low-temperature enhancement in the out-of-plane resistivity and thermopower below 40 K, hidden for the in-plane charge transport. The anomaly can be suppressed by the c-axis-oriented magnetic field, but is unaffected by field applied along the planes. The magnetic moments originate from layers of 1T-NbS2, which inevitably form during the growth, undergoing a charge-density-wave reconstruction with each superlattice cell (David-star-shaped cluster of Nb atoms) hosting a localized spin. Our results demonstrate the unique and highly anisotropic response of a spontaneously formed Kondo-lattice heterostructure, intercalated in a layered conductor.
Files
File preview
files_description.md
All files
References
Journal reference (Preprint where the data is discussed) Edoardo Martino, Carsten Putzke, Markus König, Philip J. W. Moll, Helmuth Berger, David LeBoeuf, Maxime Leroux, Cyril Proust, Ana Akrap, Holm Kirmse, Christoph Koch, ShengNan Zhang, QuanSheng Wu, Oleg V. Yazyev, László Forró and Konstantin Semeniuk, npj 2D Materials and Applications 5, 86 (2021), doi: 10.1038/s41699-021-00265-6