Published March 16, 2021 | Version v1
Dataset Open

Structure determination of an amorphous drug through large-scale NMR predictions

  • 1. Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
  • 2. Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
  • 3. New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
  • 4. Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden

* Contact person

Description

Knowledge of the structure of amorphous solids can direct, for example, the optimization of pharmaceutical formulations, but atomic-level structure determination in amorphous molecular solids has so far not been possible. Solid-state NMR is among the most popular methods to characterize amorphous materials, and Molecular Dynamics (MD) simulations can help describe the structure of disordered materials. However, directly relating MD to NMR experiments in molecular solids has been out of reach until now because of the large size of these simulations. Here, using a machine learning model of chemical shifts, we determine the atomic-level structure of the hydrated amorphous drug AZD5718 by combining dynamic nuclear polarization-enhanced solid-state NMR experiments with predicted chemical shifts for MD simulations of large systems. From these amorphous structures we then identify H-bonding motifs and relate them to local intermolecular complex formation energies.

Files

File preview

files_description.md

All files

Files (5.4 GiB)

Name Size
md5:3f1f534403ace0b118ca9025be4e931d
815 Bytes Preview Download
md5:057ef7a36ff055313036d94b8a281e34
46.8 KiB Preview Download
md5:44b01089f5d0f7bb01a40910ce800616
1.3 MiB Preview Download
md5:077feccf2c4063778983f94768beae7a
350.8 KiB Preview Download
md5:f68f06304dd00de678cdd4ddf434653b
1.7 MiB Preview Download
md5:f90aa5f0e1341a01022fc0e9c512dcad
2.7 GiB Preview Download
md5:2c18832fa57724b5b9a25dd34ad52632
2.3 GiB Preview Download
md5:51cf1a14b077222915b89908397d9041
444.9 MiB Preview Download
md5:6e2e913b9198e679bc7842bcfd13c230
10.2 KiB Preview Download
md5:460f3702015e81f2d2bde0f88290d369
1.3 MiB Preview Download

References

Journal reference (Paper where the data is discussed)
M. Cordova, M. Balodis, A. Hofstetter, F. Paruzzo, S. O. Nilsson Lill, E. S. E. Eriksson, P. Berruyer, B. Simões de Almeida, M. J. Quayle, S. T. Norberg, A. Svensk Ankarberg, S. Schantz, L. Emsley, Nat Commun 21, 2964 (2021), doi: 10.1038/s41467-021-23208-7