Publication date: Jan 19, 2021
Intermolecular interactions play an important role for the understanding of catalysis, biochemistry and pharmacy. Double-hybrid density functionals (DHDFs) combine the proper treatment of short-range interactions of common density functionals with the correct description of long-range interactions of wave-function correlation methods. Up to now, there are only a few benchmark studies available examining the performance of DHDFs in condensed phase. We studied the performance of a small but diverse selection of DHDFs implemented within Gaussian and plane waves formalism on cohesive energies of four representative dispersion interaction dominated crystal structures. We found that the PWRB95 and ωB97X-2 functionals provide an excellent description of long-ranged interactions in solids. In addition, we identified numerical issues due to the extreme grid dependence of the underlying density functional for PWRB95. The basis set superposition error (BSSE) and convergence with respect to the super cell size are discussed for two different large basis sets. This record contains raw data (input files, output files, restart files) and changes to the LibXC 4.3.4 source code.
No Explore or Discover sections associated with this archive record.
File name | Size | Description |
---|---|---|
raw_data_new.tar.gz
MD5md5:84708d02db8c0e32e5991809efde6195
|
1.6 GiB | Input files, output files and restart files of the raw data |
libxc_changes.tar
MD5md5:5da638d6e1008b19ae0ca54446d660fc
|
46.4 KiB | Changes in the libxc 4.3.4 files |
2021.8 (version v1) [This version] | Jan 19, 2021 | DOI10.24435/materialscloud:ec-57 |