Recommended by

Indexed by

In silico study on probing atomistic insight into structural stability and tensile properties of Fe-doped hydroxyapatite single crystals

Subhadip Basu1*, Shubhadeep Nag1*, Nihal B Kottan1*, Bikramjit Basu1*

1 Indian Institute of Science

* Corresponding authors emails: subhadipbasu4@gmail.com, shubhadeepnag92@gmail.com, nihalkottan@gmail.com, bikram@iisc.ac.in
DOI10.24435/materialscloud:13-sa [version v1]

Publication date: Aug 31, 2022

How to cite this record

Subhadip Basu, Shubhadeep Nag, Nihal B Kottan, Bikramjit Basu, In silico study on probing atomistic insight into structural stability and tensile properties of Fe-doped hydroxyapatite single crystals, Materials Cloud Archive 2022.108 (2022), doi: 10.24435/materialscloud:13-sa.


Hydroxyapatite (HA, Ca10PO4(OH)2) is a widely explored material in the experimental domain of biomaterials science, because of its resemblance with natural bone minerals. Specifically, in the bioceramic community, HA doped with multivalent cations (e.g., Mg+2, Fe+2, Sr+2, etc.) has been extensively investigated in the last few decades. Experimental research largely established the critical role of dopant content on the changes in mechanical and biocompatibility properties. The plethora of experimental measurements of mechanical response on doped HA is based on compression or indentation testing of polycrystalline materials. Such measurements, as well as computational predictions of me, on single crystalline (doped) HA are scarce. On that premise, the present study aims to build atomistic models of Fe2+-doped HA, a model system, with varying Fe content (10, 20, 30, and 40 mol%) and to explore their uniaxial tensile response by means of molecular dynamics (MD) simulation, together with the calculation of IR spectrum. In the equilibrated unit cell structures, Ca(1) sites were found to be energetically favourable for Fe2+ substitution. The local distribution of Fe2+ ions significantly affect the atomic partial charge distribution and chemical symmetry surrounding the functional groups. These signatures are reflected in the significant decrease in the intensity of IR peaks and are found in the Fe-doped HA, together with peak splitting because of the symmetry change in the crystal structure. Another important objective of this work is to computationally predict the mechanical response of doped HA in their single crystal format. An interesting observation is that the elastic anisotropy of undoped HA was not compromised with Fe-doping. Tensile strength (TS) is systematically reduced in doped HA with Fe+2 dopant content and a decrease in TS with temperature can be attributed to the increased thermal agitation of atoms at elevated temperatures. The physics of the tensile response was rationalized in terms of the strain dependent changes in covalent/ionic framework (Ca-P distance, P-O bond strain, O-P-O angular strain, O-H bond distance). Further, the dynamic changes in covalent bond network were energetically analyzed by calculating the changes in O-H and P-O bond vibrational energy. Summarizing, the current work develops our foundational understanding of the atomistic phenomena involved in the phase stability and tensile response of Fe-doped HA single crystals.

Materials Cloud sections using this data

No Explore or Discover sections associated with this archive record.


File name Size Description
61.4 MiB Contains input crystal structures for simulation; obtained trajectories and sample stress-strain data for different Fe-doped HA at various temperatures.


Files and data are licensed under the terms of the following license: Creative Commons Attribution 4.0 International.
Metadata, except for email addresses, are licensed under the Creative Commons Attribution Share-Alike 4.0 International license.

External references

S. Basu, S. Nag, N.Kottan, B.Basu, In silico study on probing atomistic insight into structural stability and tensile properties of Fe-doped hydroxyapatite single crystals (submitted)


Hydroxyapatite MD simulation Mechanical response iron-doping

Version history:

2022.108 (version v1) [This version] Aug 31, 2022 DOI10.24435/materialscloud:13-sa