Fatigue database of high entropy alloys
Creators
- 1. Department of Materials Science and Engineering, The University of Tennessee, Knoxville TN, USA
- 2. Imagars LLC, Hillsboro OR, USA
* Contact person
Description
Fatigue failure of metallic structures is of great concern to industrial applications. A material will not be able to practically useful if it is prone to fatigue failure. To take the advantage of lately emerged high entropy alloys (HEAs) for designing novel fatigue-resistant alloys, we compiled a fatigue database of HEAs from the literature reported till the yearend of 2021. The database is subdivided into three categories, i.e., low-cycle fatigue (LCF), high-cycle fatigue (HCF), and fatigue crack growth rate (FCGR), which contains 15, 23, and 28 distinct data records, respectively. Each data record in any of three categories is characteristic of a summary, which is comprised of alloy composition, key fatigue properties, and additional information influential to or interrelated with fatigue (e.g., material processing history, phase constitution, grain size, uniaxial tensile properties, and fatigue testing conditions), and an individual dataset, which makes up the original fatigue testing curve.
Files
File preview
files_description.md
All files
References
Journal reference Lu, K., Chauhan, A., Litvinov, D., Walter, M., Tirunilai, A. S., Freudenberger, J., Kauffmann, A., Heilmaier, M., & Aktaa, J. (2020). High-temperature low cycle fatigue behavior of an equiatomic CoCrFeMnNi high-entropy alloy. Materials Science and Engineering A, 791(May), 139781., doi: 10.1016/j.msea.2020.139781
Journal reference Lu, K., Chauhan, A., Walter, M., Tirunilai, A. S., Schneider, M., Laplanche, G., Freudenberger, J., Kauffmann, A., Heilmaier, M., & Aktaa, J. (2021). Superior low-cycle fatigue properties of CoCrNi compared to CoCrFeMnNi. Scripta Materialia, 194, 113667., doi: 10.1016/j.scriptamat.2020.113667
Journal reference Shams, S. A. A., Jang, G., Won, J. W., Bae, J. W., Jin, H., Kim, H. S., & Lee, C. S. (2020). Low-cycle fatigue properties of CoCrFeMnNi high-entropy alloy compared with its conventional counterparts. Materials Science and Engineering A, 792(June), 139661., doi: 10.1016/j.msea.2020.139661
Journal reference Shams, S. A. A., Kim, G., Won, J. W., Kim, J. N., Kim, H. S., & Lee, C. S. (2021). Effect of grain size on the low-cycle fatigue behavior of carbon-containing high-entropy alloys. Materials Science & Engineering A, 810(February), 140985., doi: 10.1016/j.msea.2021.140985
Journal reference Picak, S., Wegener, T., Sajadifar, S. V, Sobrero, C., Richter, J., Kim, H., Niendorf, T., Karaman, I., Materials, W., & Kassel, U. (2021). Acta Materialia On the low cycle fatigue response of CoCrNiFeMn high entropy alloy with ultra-fine grain structure. Acta Materialia, 205, 116540., doi: 10.1016/j.actamat.2020.116540
Journal reference Niendorf, T., Wegener, T., Li, Z., & Raabe, D. (2018). Unexpected cyclic stress-strain response of dual-phase high-entropy alloys induced by partial reversibility of deformation. Scripta Materialia, 143, 63–67., doi: 10.1016/j.scriptamat.2017.09.013
Journal reference Feng, R., Rao, Y., Liu, C., Xie, X., Yu, D., Chen, Y., Ghazisaeidi, M., Ungar, T., Wang, H., An, K., & Liaw, P. K. (2021). Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy. Nature Communications, 12(1), 1–10., doi: 10.1038/s41467-021-23689-6
Journal reference Lu, K., Chauhan, A., Tirunilai, A. S., & Freudenberger, J. (n.d.). Deformation mechanisms of CoCrFeMnNi high-entropy alloy under low-cycle-fatigue loading. 1–27., doi: 10.1016/j.actamat.2021.117089
Journal reference "Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A. and Liaw, P.K., 2012. Fatigue behavior of Al0. 5CoCrCuFeNi high entropy alloys. Acta Materialia, 60(16), pp.5723-5734., doi: 10.1016/j.actamat.2012.06.046
Journal reference Shukla, S., Wang, T., Cotton, S. and Mishra, R.S., 2018. Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy. Scripta Materialia, 156, pp.105-109., doi: 10.1016/j.scriptamat.2018.07.022
Journal reference Liu, K., Nene, S.S., Frank, M., Sinha, S. and Mishra, R.S., 2018. Metastability-assisted fatigue behavior in a friction stir processed dual-phase high entropy alloy. Materials Research Letters, 6(11), pp.613-619., doi: 10.1080/21663831.2018.1523240
Journal reference Guennec, B., Kentheswaran, V., Perrière, L., Ueno, A., Guillot, I., Couzinié, J.P. and Dirras, G., 2018. Four-point bending fatigue behavior of an equimolar BCC HfNbTaTiZr high-entropy alloy: macroscopic and microscopic viewpoints. Materialia, 4, pp.348-360., doi: 10.1016/j.mtla.2018.09.040
Journal reference Liu, K., Komarasamy, M., Gwalani, B., Shukla, S. and Mishra, R.S., 2019. Fatigue behavior of ultrafine grained triplex Al0. 3CoCrFeNi high entropy alloy. Scripta Materialia, 158, pp.116-120., doi: 10.1016/j.scriptamat.2018.08.048
Journal reference Liu, K., Gwalani, B., Komarasamy, M., Shukla, S., Wang, T. and Mishra, R.S., 2019. Effect of nano-sized precipitates on the fatigue property of a lamellar structured high entropy alloy. Materials Science and Engineering: A, 760, pp.225-230., doi: 10.1016/j.msea.2019.06.012
Journal reference Chlup, Z., Fintová, S., Hadraba, H., Kuběna, I., Vilémová, M. and Matějíček, J., 2019. Fatigue behaviour and crack initiation in CoCrFeNiMn high-entropy alloy processed by powder metallurgy. Metals, 9(10), p.1110., doi: 10.3390/met9101110
Journal reference Tian, Y.Z., Sun, S.J., Lin, H.R. and Zhang, Z.F., 2019. Fatigue behavior of CoCrFeMnNi high-entropy alloy under fully reversed cyclic deformation. Journal of materials science & technology, 35(3), pp.334-340., doi: 10.1016/j.jmst.2018.09.068
Journal reference Suzuki, K., Koyama, M., Hamada, S., Tsuzaki, K. and Noguchi, H., 2020. Planar slip-driven fatigue crack initiation and propagation in an equiatomic CrMnFeCoNi high-entropy alloy. International Journal of Fatigue, 133, p.105418., doi: 10.1016/j.ijfatigue.2019.105418
Journal reference Kashaev, N., Ventzke, V., Petrov, N., Horstmann, M., Zherebtsov, S., Shaysultanov, D., Sanin, V. and Stepanov, N., 2019. Fatigue behaviour of a laser beam welded CoCrFeNiMn-type high entropy alloy. Materials Science and Engineering: A, 766, p.138358., doi: 10.1016/j.msea.2019.138358
Journal reference Kim, Y.K., Ham, G.S., Kim, H.S. and Lee, K.A., 2019. High-cycle fatigue and tensile deformation behaviors of coarse-grained equiatomic CoCrFeMnNi high entropy alloy and unexpected hardening behavior during cyclic loading. Intermetallics, 111, p.106486., doi: 10.1016/j.intermet.2019.106486
Journal reference Lee, G. T., Won, J. W., Lim, K. R., Kang, M., Kwon, H. J., Na, Y. S., & Choi, Y. S. (2020). Effect of Microstructural Features on the High-Cycle Fatigue Behavior of CoCrFeMnNi High-Entropy Alloys Deformed at Room and Cryogenic Temperatures. Metals and Materials International., doi: 10.1007/s12540-020-00786-7
Journal reference Ghomsheh, M. Z., Khatibi, G., Weiss, B., Lederer, M., Schwarz, S., Steiger-Thirsfeld, A., Tikhonovsky, M. A., Tabachnikova, E. D., & Schafler, E. (2020). High cycle fatigue deformation mechanisms of a single phase CrMnFeCoNi high entropy alloy. Materials Science and Engineering A, 777(January), 139034., doi: 10.1016/j.msea.2020.139034
Journal reference Kim, Y., Baek, M., Yang, S., & Lee, K. (2021). In-situ formed oxide enables extraordinary high-cycle fatigue resistance in additively manufactured CoCrFeMnNi high-entropy alloy. Additive Manufacturing, 38(December 2020), 101832., doi: 10.1016/j.addma.2020.101832
Journal reference Tang, Z., Yuan, T., Tsai, C. W., Yeh, J. W., Lundin, C. D., & Liaw, P. K. (2015). Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Materialia, 99, 247–258., doi: 10.1016/j.actamat.2015.07.004
Journal reference Liaw, P. K., Chen, S., Tseng, K.-K., Yeh, J.-W., Liu, T., & Meng, F. (2020). Remarkable High-Cycle Fatigue Resistance of the TiZrNbHfTa High-Entropy Alloy and Associated Mechanisms. SSRN Electronic Journal, 1–43., doi: 10.2139/ssrn.3708757