This record has versions v1, v2. This is version v1.

Recommended by

Indexed by

Anharmonic exciton-phonon coupling in metal-organic chalcogenides hybrid quantum wells

Christoph Kastl1,2, Pietro Bonfà3,4, Lorenzo Maserati5,6*

1 The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

2 Walter Schottky Institute and Physik Department, Technical University of Munich, Garching 85748, Germany.

3 Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universitá di Parma, 43124 Parma, Italy.

4 Centro S3, CNR-Istituto Nanoscienze, via Campi 213/A, I-41125 Modena, Italy

5 Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti-Pichat 6/2, 40127 Bologna, Italy

6 Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy

* Corresponding authors emails:
DOI10.24435/materialscloud:9h-fc [version v1]

Publication date: Sep 14, 2022

How to cite this record

Christoph Kastl, Pietro Bonfà, Lorenzo Maserati, Anharmonic exciton-phonon coupling in metal-organic chalcogenides hybrid quantum wells, Materials Cloud Archive 2022.114 (2022), doi: 10.24435/materialscloud:9h-fc.


In stark contrast to inorganic quantum wells, hybrid quantum wells based on metal-organic semiconductors are characterized by relatively soft lattices. In the latter, excitonic states are deeply affected by coupling with optical phonons. A detailed understanding of the lattice role in exciton dynamics is therefore essential to improve the optoelectronic performance of these materials. Beyond 2D metal halide perovskites, layered metal-organic chalcogenides (MOCs) are an air-stable, underexplored material class hosting complex excitonic phenomena that could be exploited as photodetectors, light emitting devices and ultrafast photoswitches. Here, we elucidate the role of lattice phonons in the optical transitions at different temperatures in the prototypical MOC [AgSePh]∞. We detect coherent exciton-phonon coupling by pump-probe transient absorption spectroscopy, dominated by a Fröhlich interaction with optical phonons at 7 and 12 meV. Through a concerted use of ab initio calculations, linear and Raman spectroscopies, we reveal a distinct phonon anharmonicity clearly manifests in a non-trivial temperature-dependent Stokes shift, deeply impacting the excitonic photoluminescence. The temperature-dependent absorption and photoluminesce data further reveals a Huang-Rhys parameter of about 1.7 suggesting a strong exciton-phonon coupling in both optical transitions. Finally, angle-resolved Raman spectroscopy hints at a distinct anisotropy in the phonon coupling process. Our results indicate shared characters in the exciton-phonon interaction for MOCs and the 2D perovskites, either implying shared polar character of the inorganic sublattices and/or a more important role of the hybrid quantum well superlattice structure.

Materials Cloud sections using this data

No Explore or Discover sections associated with this archive record.


File name Size Description
24.5 MiB Archive with input and output files for the QuantumESPRESSO DFT package.


Files and data are licensed under the terms of the following license: Creative Commons Attribution 4.0 International.
Metadata, except for email addresses, are licensed under the Creative Commons Attribution Share-Alike 4.0 International license.

External references

No external references available for this Materials Cloud Archive record.


exciton-phonon coupling metal-organic chalcogenides Raman spectroscopy

Version history:

2023.6 (version v2) Jan 09, 2023 DOI10.24435/materialscloud:xf-g8
2022.114 (version v1) [This version] Sep 14, 2022 DOI10.24435/materialscloud:9h-fc