×

Recommended by

Indexed by

Dataset for fracture and impact toughness of high-entropy alloys

Xuesong Fan1*, Shiyi Chen1*, Baldur Steingrimsson2*, Weidong Li1*, Peter K. Liaw1*

1 Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA

2 Imagars LLC, Hillsboro, OR 97124, USA

* Corresponding authors emails: xfan5@vols.utk.edu, schen50@vols.utk.edu, baldur@imagars.com, lei432378yu@gmail.com, pliaw@utk.edu
DOI10.24435/materialscloud:s5-rp [version v2]

Publication date: Nov 21, 2022

How to cite this record

Xuesong Fan, Shiyi Chen, Baldur Steingrimsson, Weidong Li, Peter K. Liaw, Dataset for fracture and impact toughness of high-entropy alloys, Materials Cloud Archive 2022.153 (2022), doi: 10.24435/materialscloud:s5-rp.

Description

Fracture dictates the service limits of metallic structures. Damage tolerance of materials may be characterized by fracture toughness rigorously developed from fracture mechanics, or less rigorous yet more easily obtained impact toughness (or impact energy as a variant). Given the promise of high-entropy alloys (HEAs) in structural and damage-tolerance applications, we compiled a dataset of fracture toughness and impact toughness/energy from the literature till mid-2022. The dataset is subdivided into three categories, i.e., fracture toughness, impact toughness, and impact energy, which contain 148, 14, and 78 distinct data records, respectively. On top of the alloy chemistry and measured fracture quantities, each data record also records the factors influential to fracture. Examples are material processing history, phase structure, grain size, uniaxial tensile properties such as yield strength and elongation, and testing conditions.

Materials Cloud sections using this data

No Explore or Discover sections associated with this archive record.

Files

File name Size Description
Dataset for Fracture and Impact Toughness of High-Entropy Alloys_v2.xlsx
MD5md5:0cf5d37dc2341ca110e94c87489409a2
132.8 KiB A summary of data on fracture toughness, impact toughness, and impact energy for various high-entropy alloys.

License

Files and data are licensed under the terms of the following license: Creative Commons Attribution 4.0 International.
Metadata, except for email addresses, are licensed under the Creative Commons Attribution Share-Alike 4.0 International license.

External references

Journal reference
Zhang, H., He, Y. & Pan, Y. Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening. Scr. Mater. 69, 342-345 (2013) doi:10.1016/j.scriptamat.2013.05.020
Journal reference
Roy, U., Roy, H., Daoud, H., Glatzel, U. & Ray, K. K. Fracture toughness and fracture micromechanism in a cast AlCoCrCuFeNi high entropy alloy system. Mater. Lett. 132, 186-189 (2014) doi:10.1016/j.matlet.2014.06.067
Journal reference
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E. H., George, E. P. & Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153-1158 (2014) doi:10.1126/science.1254581
Journal reference
Seifi, M., Li, D., Yong, Z., Liaw, P. K. & Lewandowski, J. J. Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys. Jom 67, 2288-2295 (2015) doi:10.1007/s11837-015-1563-9
Journal reference
Chen, C., Pang, S., Cheng, Y. & Zhang, T. Microstructure and mechanical properties of Al20−xCr20+0.5xFe20Co20Ni20+0.5x high entropy alloys. J. Alloys Compd. 659, 279-287 (2016) doi:10.1016/j.jallcom.2015.10.258
Journal reference
Gludovatz, B., Hohenwarter, A., Thurston, K. V., Bei, H., Wu, Z., George, E. P. & Ritchie, R. O. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016) doi:10.1038/ncomms10602
Journal reference
Zhang, A., Han, J., Meng, J., Su, B. & Li, P. Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture. Mater. Lett. 181, 82-85 (2016) doi:10.1016/j.matlet.2016.06.014
Journal reference
Zou, Y., Okle, P., Yu, H., Sumigawa, T., Kitamura, T., Maiti, S., Steurer, W. & Spolenak, R. Fracture properties of a refractory high-entropy alloy: In situ micro-cantilever and atom probe tomography studies. Scr. Mater. 128, 95-99 (2017) doi:10.1016/j.scriptamat.2016.09.036
Journal reference
Zhang, A., Han, J., Su, B., Li, P. & Meng, J. Microstructure, mechanical properties and tribological performance of CoCrFeNi high entropy alloy matrix self-lubricating composite. Mater. Design 114, 253-263 (2017) doi:10.1016/j.matdes.2016.11.072
Journal reference
Mohanty, S., Maity, T. N., Mukhopadhyay, S., Sarkar, S., Gurao, N. P., Bhowmick, S. & Biswas, K. Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng.: A 679, 299-313 (2017) doi:10.1016/j.msea.2016.09.062
Journal reference
Luo, W., Liu, Y., Luo, Y. & Wu, M. Fabrication and characterization of WC-AlCoCrCuFeNi high-entropy alloy composites by spark plasma sintering. J. Alloys Compd. 754, 163-170 (2018) doi:10.1016/j.jallcom.2018.04.270
Journal reference
Yadav, S., Sarkar, S., Aggarwal, A., Kumar, A. & Biswas, K. Wear and mechanical properties of novel (CuCrFeTiZn)100-xPbx high entropy alloy composite via mechanical alloying and spark plasma sintering. Wear 410-411, 93-109 (2018) doi:10.1016/j.wear.2018.05.023
Journal reference
Zhang, A., Han, J., Su, B. & Meng, J. A promising new high temperature self-lubricating material: CoCrFeNiS0.5 high entropy alloy. Mater. Sci. Eng.: A 731, 36-43 (2018) doi:10.1016/j.msea.2018.06.030
Journal reference
Wang, S.-P., Ma, E. & Xu, J. Notch fracture toughness of body-centered-cubic (TiZrNbTa) Mo high-entropy alloys. Intermetallics 103, 78-87 (2018) doi:10.1016/j.intermet.2018.10.008
Journal reference
Chen, L., Bobzin, K., Zhou, Z., Zhao, L., Öte, M., Königstein, T., Tan, Z. & He, D. Wear behavior of HVOF-sprayed Al0.6TiCrFeCoNi high entropy alloy coatings at different temperatures. Surf. Coat. Technol. 358, 215-222 (2019) doi:10.1016/j.surfcoat.2018.11.052
Journal reference
Jo, Y. H., Choi, W. M., Kim, D. G., Zargaran, A., Lee, K., Sung, H., Sohn, S. S., Kim, H. S., Lee, B. J. & Lee, S. Utilization of brittle σ phase for strengthening and strain hardening in ductile VCrFeNi high-entropy alloy. Mater. Sci. Eng.: A 743, 665-674 (2019) doi:10.1016/j.msea.2018.11.136
Journal reference
Chung, D., Ding, Z. & Yang, Y. Hierarchical Eutectic Structure Enabling Superior Fracture Toughness and Superb Strength in CoCrFeNiNb0.5 Eutectic High Entropy Alloy at Room Temperature. Adv. Eng. Mater. 21 (2018) doi:10.1002/adem.201801060
Journal reference
Xiao, Y., Zou, Y., Ma, H., Sologubenko, A. S., Maeder, X., Spolenak, R. & Wheeler, J. M. Nanostructured NbMoTaW high entropy alloy thin films: High strength and enhanced fracture toughness. Scr. Mater. 168, 51-55 (2019) doi:10.1016/j.scriptamat.2019.04.011
Journal reference
Jo, Y. H., Doh, K.-Y., Kim, D. G., Lee, K., Kim, D. W., Sung, H., Sohn, S. S., Lee, D., Kim, H. S., Lee, B.-J. & Lee, S. Cryogenic-temperature fracture toughness analysis of non-equi-atomic V10Cr10Fe45Co20Ni15 high-entropy alloy. J. Alloys Compd. 809 (2019) doi:10.1016/j.jallcom.2019.151864
Journal reference
Nair, R. B., Arora, H. S., Boyana, A. V., Saiteja, P. & Grewal, H. S. Tribological behavior of microwave synthesized high entropy alloy claddings. Wear 436-437 (2019) doi:10.1016/j.wear.2019.203028
Journal reference
Wang, Z., Xiong, J., Guo, Z., Yang, T., Liu, J. & Chai, B. The microstructure and properties of novel Ti(C,N)-based cermets with multi-component CoCrFeNiCu high-entropy alloy binders. Mater. Sci. Eng.: A 766 (2019) doi:10.1016/j.msea.2019.138345
Journal reference
Fang, Y., Chen, N., Du, G., Zhang, M., Zhao, X., Cheng, H. & Wu, J. High-temperature oxidation resistance, mechanical and wear resistance properties of Ti(C,N)-based cermets with Al0.3CoCrFeNi high-entropy alloy as a metal binder. J. Alloys Compd. 815 (2020) doi:10.1016/j.jallcom.2019.152486
Journal reference
Li, N., Wu, S., Ouyang, D., Zhang, J. & Liu, L. Fe-based metallic glass reinforced FeCoCrNiMn high entropy alloy through selective laser melting. J. Alloys Compd. 822 (2020) doi:10.1016/j.jallcom.2020.153695
Journal reference
Ganji, R. S., Rajulapati, K. V. & Rao, K. Development of a multi-phase AlCuTaVW high-entropy alloy using powder metallurgy route and its mechanical properties. Trans. Indian Inst. Met. 73, 613-618 (2020) doi:10.1007/s12666-020-01875-2
Journal reference
Xin, B., Zhang, A., Han, J., Su, B. & Meng, J. Tuning composition and microstructure by doping Ti and C for enhancing mechanical property and wear resistance of Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloy matrix composites. J. Alloys Compd. 836 (2020) doi:10.1016/j.jallcom.2020.155273
Journal reference
Guo, Z., Zhang, A., Han, J. & Meng, J. Microstructure, mechanical and tribological properties of CoCrFeNiMn high entropy alloy matrix composites with addition of Cr3C2. Tribology International 151 (2020) doi:10.1016/j.triboint.2020.106436
Journal reference
Jo, Y. H., Yang, J., Doh, K.-Y., An, W., Kim, D. W., Sung, H., Lee, D., Kim, H. S., Sohn, S. S. & Lee, S. Analysis of damage-tolerance of TRIP-assisted V10Cr10Fe45Co30Ni5 high-entropy alloy at room and cryogenic temperatures. J. Alloys Compd. 844 (2020) doi:10.1016/j.jallcom.2020.156090
Journal reference
Long, Y., Che, J., Wu, Z., Lin, H.-T. & Zhang, F. High entropy alloy borides prepared by powder metallurgy process and the enhanced fracture toughness by addition of yttrium. Mater. Chem. Phys. 257 (2021) doi:10.1016/j.matchemphys.2020.123715
Journal reference
Gou, Q., Xiong, J., Guo, Z., Liu, J., Yang, L. & Li, X. Influence of NbC additions on microstructure and wear resistance of Ti(C,N)-based cermets bonded by CoCrFeNi high-entropy alloy. International Journal of Refractory Metals and Hard Materials 94 (2021) doi:10.1016/j.ijrmhm.2020.105375
Journal reference
Erdogan, A., Günen, A., Gök, M. S. & Zeytin, S. Microstructure and mechanical properties of borided CoCrFeNiAl0.25Ti0.5 high entropy alloy produced by powder metallurgy. Vacuum 183 (2021) doi:10.1016/j.vacuum.2020.109820
Journal reference
Scales, R. J., Armstrong, D. E. J., Wilkinson, A. J. & Li, B. S. On the brittle-to-ductile transition of the as-cast TiVNbTa refractory high-entropy alloy. Materialia 14 (2020) doi:10.1016/j.mtla.2020.100940
Journal reference
Salemi, F., Karimzadeh, F. & Abbasi, M. H. Evaluation of Thermal and Mechanical Behavior of CuNiCoZnAl High-Entropy Alloy Fabricated Using Mechanical Alloying and Spark Plasma Sintering. Met. Mat. Trans. A 52, 1947-1962 (2021) doi:10.1007/s11661-021-06205-9
Journal reference
Dada, M., Popoola, P., Mathe, N., Adeosun, S. & Pityana, S. Investigating the elastic modulus and hardness properties of a high entropy alloy coating using nanoindentation. International Journal of Lightweight Materials and Manufacture 4, 339-345 (2021) doi:10.1016/j.ijlmm.2021.04.002
Journal reference
Liu, Q., Dong, T.-s., Fu, B.-g., Li, G.-l. & Yang, L.-j. Effect of Laser Remelting on Microstructure and Properties of AlCoCrFeNi High-Entropy Alloy Coating. J. Mater. Eng. Perform. 30, 5728-5735 (2021) doi:10.1007/s11665-021-05806-0
Journal reference
Günen, A. Tribocorrosion behavior of boronized Co1.19Cr1.86Fe1.30Mn1.39Ni1.05Al0.17B0.04 high entropy alloy. Surf. Coat. Technol. 421 (2021) doi:10.1016/j.surfcoat.2021.127426
Journal reference
Górniewicz1a, D., Jóźwiak, S., Przygucki, H. & Kopec, M. The concept of improving the fracture toughness of double-phase high entropy alloy produced by high-pulse sintering method U-FAST. 15th International Conference on Advances in Experimental Mechanics (2021)
Journal reference
Solodkyi, I., Teslia, S., Bezdorozhev, O., Trosnikova, I., Yurkova, O., Bogomol, I. & Loboda, P. Hardmetals prepared from WC-W2C eutectic particles and AlCrFeCoNiV high entropy alloy as a binder. Vacuum 195 (2022) doi:10.1016/j.vacuum.2021.110630
Journal reference
Xin, B., Zhang, A., Han, J., Zhang, J. & Meng, J. Enhancing mechanical properties of the boron doped Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloy via tuning composition and microstructure. J. Alloys Compd. 896 (2022) doi:10.1016/j.jallcom.2021.162852
Journal reference
Yang, J., Jo, Y. H., An, W., Kim, H. S., Lee, B.-J., Lee, S., Sung, H. & Sohn, S. S. Effects of deformation-induced martensitic transformation on cryogenic fracture toughness for metastable Si8V2Fe45Cr10Mn5Co30 high-entropy alloy. Acta Mater. 225 (2022) doi:10.1016/j.actamat.2021.117568
Journal reference
Jiang, H., Ni, Z., Wang, J., Li, L., Huang, T., Han, K., Zhang, Q. & Sui, H. Design multi‐component eutectic alloys in the Co‐Cr‐Fe‐Ni‐Nb system using simple mixing method. Adv. Eng. Mater. 24, 202101339 (2022) doi:10.1002/adem.202101339
Journal reference
Hong, S., Li, J., Zhao, P., Xu, Y. & Li, W. Evolution in Wear and High-Temperature Oxidation Resistance of Laser-Clad AlxMoNbTa Refractory High-Entropy Alloys Coatings with Al Addition Content. Coatings 12 (2022) doi:10.3390/coatings12020121
Journal reference
Yang, S., Xiong, J., Guo, Z., Wu, B., Yang, T. e., You, Q., Liu, J., Deng, C., Fang, D., Gou, S., Yu, Z. & Chen, S. Effects of CrMnFeCoNi additions on microstructure, mechanical properties and wear resistance of Ti(C,N)-based cermets. Journal of Materials Research and Technology 17, 2480-2494 (2022) doi:10.1016/j.jmrt.2022.02.021
Journal reference
Fan, X. J., Qu, R. T. & Zhang, Z. F. Remarkably high fracture toughness of HfNbTaTiZr refractory high-entropy alloy. Journal of Materials Science & Technology 123, 70-77 (2022) doi:10.1016/j.jmst.2022.01.017
Journal reference
Wu, Z., Chen, Y., Hai, W. & Liu, M. Effect of AlxCoCrFeNiCu binder on mechanical properties and wear performance of Ti (C, N) cermet. International Journal of Modern Physics B 36, 2240038 (2022) doi:10.1142/S0217979222400380
Journal reference
Qian, C., Liu, Y., Cheng, H., Li, K., Liu, B. & Zhang, X. Effect of carbon content on microstructure and mechanical properties of cemented carbides with CoNiFeCr high entropy alloy binder. Available at SSRN 4074390 (2022) doi:10.2139/ssrn.4074390
Journal reference
Long, Y., Zhang, G., Chen, J., Datye, A., Zhang, S., Schwarz, U. D., Lin, H.-T. & Zhang, F. Effect of Yttrium on Mechanical Properties, Phases, and Microstructure of Feconialcrb High Entropy Alloys Prepared by Sps. Available at SSRN 4074390 (2022) doi:10.2139/ssrn.4084629
Journal reference
Liu, L.-X., Pan, J., Zhang, C., Xu, J.-Y., Guo, R. & Liu, L. Achieving high strength and ductility in a 3D-printed high entropy alloy by cooperative planar slipping and stacking fault. Mater. Sci. Eng.: A 843 (2022) doi:10.1016/j.msea.2022.143106
Journal reference
Zheng, D. High-Entropy-Alloy CoFeNiCr Bonded WC-Based Cemented Carbide Prepared by Spark Plasma Sintering. Met. Mat. Trans. A 53, 2724-2729 (2022) doi:10.1007/s11661-022-06701-6
Journal reference
Semenyuk, A., Klimova, M., Shaysultanov, D., Chernichenko, R., Zherebtsov, S. & Stepanov, N. Effect of carbon content on cryogenic mechanical properties of CoCrFeMnNi high entropy alloy. IOP Conference Series: Materials Science and Engineering. 012050 (2021)
Journal reference
Jiang, W., Gao, X., Cao, Y., Liu, Y., Mao, Q., Gu, L. & Zhao, Y. Charpy impact behavior and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy at ambient and cryogenic temperatures. Mater. Sci. Eng.: A 837 (2022) doi:10.1016/j.msea.2022.142735
Journal reference
Li, D. & Zhang, Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics 70, 24-28 (2016) doi:10.1016/j.intermet.2015.11.002
Journal reference
Xia, S. Q., Gao, M. C. & Zhang, Y. Abnormal temperature dependence of impact toughness in Al CoCrFeNi system high entropy alloys. Mater. Chem. Phys. 210, 213-221 (2018) doi:10.1016/j.matchemphys.2017.06.021
Journal reference
Kim, J. H., Lim, K. R., Won, J. W., Na, Y. S. & Kim, H.-S. Mechanical properties and deformation twinning behavior of as-cast CoCrFeMnNi high-entropy alloy at low and high temperatures. Mater. Sci. Eng.: A 712, 108-113 (2018) doi:10.1016/j.msea.2017.11.081
Journal reference
Bi, G., Chew, Y., Weng, F., Zhu, Z., Ng, F. L. & Lee, B. Y. Process study and characterization of properties of FerCrNiMnCo high-entropy alloys fabricated by laser-aided additive manufacturing. Advanced Laser Processing and Manufacturing II. 43-52 (2018) doi:10.1117/12.2502272
Journal reference
Jo, Y. H., Kim, D. G., Jo, M. C., Doh, K. Y., Sohn, S. S., Lee, D., Kim, H. S., Lee, B. J. & Lee, S. Effects of deformation–induced BCC martensitic transformation and twinning on impact toughness and dynamic tensile response in metastable VCrFeCoNi high–entropy alloy. J. Alloys Compd. 785, 1056-1067 (2019) doi:10.1016/j.jallcom.2019.01.293
Journal reference
Yang, M., Zhou, L., Wang, C., Jiang, P., Yuan, F., Ma, E. & Wu, X. High impact toughness of CrCoNi medium-entropy alloy at liquid-helium temperature. Scr. Mater. 172, 66-71 (2019) doi:10.1016/j.scriptamat.2019.07.010
Journal reference
Lin, D., Xu, L., Jing, H., Han, Y., Zhao, L. & Minami, F. Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting. Add. Manuf. 32 (2020) doi:10.1016/j.addma.2020.101058
Journal reference
Zhang, L. & Zhang, Y. Tensile Properties and Impact Toughness of AlCoxCrFeNi3.1–x (x = 0.4, 1) High-Entropy Alloys. Frontiers in Materials 7 (2020) doi:10.3389/fmats.2020.00092
Journal reference
Kim, Y.-K., Kim, M.-C. & Lee, K.-A. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion. Journal of Materials Science & Technology 97, 10-19 (2022) doi:10.1016/j.jmst.2021.04.030
Journal reference
Ostovari Moghaddam, A., Pasandideh, J., Abdollahzadeh, A., Shaburova, N. A. & Trofimov, E. On the application of NbTaTiVW refractory high entropy alloy particles in the manufacturing process of WC based matrix body drill bits. International Journal of Refractory Metals and Hard Materials 99 (2021) doi:10.1016/j.ijrmhm.2021.105608

Keywords

High-entropy Alloys Fracture Toughness Impact Toughness Impact Energy

Version history:

2022.153 (version v2) [This version] Nov 21, 2022 DOI10.24435/materialscloud:s5-rp
2022.124 (version v1) Sep 29, 2022 DOI10.24435/materialscloud:3q-hs