Publication date: Jun 10, 2022
Low-dimensional materials can display enhanced electronic, magnetic, and quantum properties. However, 1D exfoliable nanowires have not been explored as much as their 2D and 0D counterparts. To address this, we use the topological scaling algorithm to identify all sufficiently metastable materials in the Materials Project database which have bulk crystals with one-dimensional (1D) structural motifs. We narrow our search to 263 bulk precursors which exfoliate unique 1D nanowires and contain d-orbital valence electrons. After exfoliating nanowires from these bulk precursors and applying structural optimization, we determine thermodynamic stability in both exfoliation energy (per-atom) and line tension (per-Angstrom) units, the latter of which we argue is a better predictor of stability in 1D materials. We further calculate the ferromagnetic ordering of these isolated nanowire materials. This repository reports the final atomic structure, thermodynamic stability, magnetic moment (assumed ferromagnetic), and MaterialsProject ID of the bulk precursor for the 1D nanowire materials found in this search. It further reports a list of MaterialsProject ID's for crystals which qualify as "bipartides", crystals which are actually two interwoven sub-networks within a single unit cell.
No Explore or Discover sections associated with this archive record.
File name | Size | Description |
---|---|---|
nanowires.yaml
MD5md5:74d6ce8b6d75cfba5f478b24a972178e
|
707.7 KiB | .yaml file containing the structure, thermodynamic, and magnetic information about the enclosed nanowires |
bipartite_ids.txt
MD5md5:30928fd5fd5e7224c234c6cb04bacae2
|
226 Bytes | List of MaterialsProject ID structures which qualify as "bipartides" by our search |
2022.73 (version v1) [This version] | Jun 10, 2022 | DOI10.24435/materialscloud:gq-6j |