×

Recommended by

Indexed by

Enhancement of exchange bias and perpendicular magnetic anisotropy in CoO/Co multilayer thin films by tuning the alumina template nanohole size

Mohamed Salaheldeen1, Ayman Nafady2, Ahmed M. Abu-Dief3, Rosario Díaz Crespo4, María Paz Fernández -García4, Juan Pedro Andrés5, Ricardo López Antón5, Jesús A. Blanco4, Pablo Álvarez-Alonso4*

1 Departamento de Física Aplicada, EIG, Universidad del País Vasco, UPV/EHU, 20018, San Sebastián, Spain.

2 Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia

3 Chemistry Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt

4 Departamento de Física, Universidad de Oviedo, C/ Federico García Lorca 18, 33007 Oviedo, Asturias, Spain.

5 Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.

* Corresponding authors emails: alvarezapablo@uniovi.es
DOI10.24435/materialscloud:jg-e7 [version v1]

Publication date: Jun 16, 2022

How to cite this record

Mohamed Salaheldeen, Ayman Nafady, Ahmed M. Abu-Dief, Rosario Díaz Crespo, María Paz Fernández -García, Juan Pedro Andrés, Ricardo López Antón, Jesús A. Blanco, Pablo Álvarez-Alonso, Enhancement of exchange bias and perpendicular magnetic anisotropy in CoO/Co multilayer thin films by tuning the alumina template nanohole size, Materials Cloud Archive 2022.80 (2022), https://doi.org/10.24435/materialscloud:jg-e7

Description

The interest in magnetic nanostructures exhibiting perpendicular magnetic anisotropy and ex-change bias effect has increased in recent years owing to their applications in a new generation of spintronic devices that combine several functionalities. We present a nanofabrication process used to induce perpendicular magnetic anisotropy and exchange bias. 30-nm-thick CoO/Co multilayers were deposited on nanostructured alumina templates with a broad range of pore diameters, 34 nm ≤ Dp ≤ 96 nm, while maintaining the hexagonal lattice parameter at 107 nm. Increase of both the exchange bias field (HEB) and the coercivity (HC) (12 times and 27 times, respectively) was ob-served in the nanostructured films compared to the non-patterned film. The marked dependence of HEB and HC with antidot hole diameters pinpoints to an in-plane to out-of-plane changeover of the magnetic anisotropy at a nanohole diameter of ∼ 75 nm. Micromagnetic simulation shows the existence of antiferromagnetic layers that generate an exceptional magnetic configuration around the holes, named as antivortex-state. This configuration is responsible of inducing extra high-energy superdomain walls for samples with edge-to-edge distance (W) >> 27 nm and high-energy stripe magnetic domains for W < 27 nm, responsible of the perpendicular magnetic signal of the samples.

Materials Cloud sections using this data

No Explore or Discover sections associated with this archive record.

Files

File name Size Description
Fig2.dat
MD5md5:4df33144a5bd1c7b209e7a8e0526d0d3
15.2 KiB X-ray reflectivity experimental data (open circles) and simulation (red line) of the Glass/Pd/[CoO/Co]x7/Pd ML. Plain text
Fig3a).dat
MD5md5:f9b63b3ce599e55b4931909ab5fcdf7d
208.0 KiB In-plane MOKE hysteresis loops for the non-patterned and antidot CoO/Co ML samples with different hole diameters at room temperature. Plain text
Fig3b).dat
MD5md5:b44475c51b23b8e54dd1800970b6d7ca
113.6 KiB Out-of-the-plane MOKE hysteresis loops for the non-patterned and antidot CoO/Co ML samples with different hole diameters at room temperature. Plain text
Fig4.dat
MD5md5:3b2a598106c8ebc3ad0c15890c9af238
128 Bytes Room temperature coercivity measured along the out-of-the plane and in-plane directions for the antidot CoO/Co ML as a function of antidot hole diameter. Plain text
Fig5-INP.dat
MD5md5:5f3ebf0af7db67f25d3a80776db8b55d
40.5 KiB In-plane of M(H) curves measured at 60 K after field cooling (Hcool = 20 kOe) for the CoO/Co MLs with different hole diameters. Plain text
Fig5-OOP.dat
MD5md5:29ec0bc9ed429fc99a6e5a31f87edd81
49.7 KiB Out-of-the-plane of M(H) curves measured at 60 K after field cooling (Hcool = 20 kOe) for the CoO/Co MLs with different hole diameters. Plain text
figure9.png
MD5md5:c475d0e93866232594072492c628d935
518.9 KiB Micromagnetic simulation of the OOP magnetic domain structure of Co1, CoO1, Co2, and CoO2 nanostructured layers with W = 76 nm and fixed lattice parameter P = 108 nm at the remanence state. PNG format.
figure11.png
MD5md5:0903292c6ff3a46854dae2ed931cfc2f
410.1 KiB Micromagnetic simulation of the OOP magnetic domain structure of Co1, CoO1, Co2, and CoO2 nanostructured layers with W = 14 nm and fixed lattice parameter P = 108 nm at the remanence state. PNG format.

License

Files and data are licensed under the terms of the following license: Creative Commons Attribution Non Commercial Share Alike 4.0 International.
Metadata, except for email addresses, are licensed under the Creative Commons Attribution Share-Alike 4.0 International license.

External references

Journal reference (Paper in which the data is discussed)
Mohamed Salaheldeen, Ayman Nafady, Ahmed M. Abu-Dief, Rosario Díaz Crespo, María Paz Fernández-García, Juan Pedro Andrés, Ricardo López Antón, Jesús A. Blanco, Pablo Álvarez-Alonso. Submitted to Nanomaterials

Keywords

Nanostructured thin films Perpendicular magnetic anisotropy Exchange bias

Version history:

2022.80 (version v1) [This version] Jun 16, 2022 DOI10.24435/materialscloud:jg-e7