This record has versions v1, v2, v3. This is version v1.
×

Recommended by

Indexed by

Single in-situ interface characterization composed of niobium and a selectively grown topological insulator nanoribbon

Kevin Janßen1,2,3, Philipp Rüßmann4,5*, Sergej Liberda1,3, Michael Schleenvoigt1,3, Xiao Hou1, Abdul Rehman Jalil1,3, Florian Lentz6, Stefan Trellenkamp6, Benjamin Bennemann1,3, Erik Zimmermann1,3, Gregor Mussler1,3, Peter Schüffelgen1,3, Claus-Michael Schneider2, Stefan Blügel5, Detlev Grützmacher1,3, Lukasz Plucinski2, Thomas Schäpers1,3

1 Peter Grünberg Insitute 9, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

2 Peter Grünberg Insitute 6, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

3 JARA-Fundamentals of Future Information Technology, Jülich-Aachen Research Alliance, Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany

4 Institute of Theoretical Physics and Astrophysics, University of Würzburg, D-97074, Germany

5 Peter Grünberg Institut and Institute for Advanced Simulation (PGI-1/IAS-1), Forschungszentrum Jülich and JARA, D-52425 Jülich

6 Helmholtz Nano Facility, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

* Corresponding authors emails: philipp.ruessmann@uni-wuerzburg.de
DOI10.24435/materialscloud:tb-mf [version v1]

Publication date: Jul 12, 2023

How to cite this record

Kevin Janßen, Philipp Rüßmann, Sergej Liberda, Michael Schleenvoigt, Xiao Hou, Abdul Rehman Jalil, Florian Lentz, Stefan Trellenkamp, Benjamin Bennemann, Erik Zimmermann, Gregor Mussler, Peter Schüffelgen, Claus-Michael Schneider, Stefan Blügel, Detlev Grützmacher, Lukasz Plucinski, Thomas Schäpers, Single in-situ interface characterization composed of niobium and a selectively grown topological insulator nanoribbon, Materials Cloud Archive 2023.110 (2023), https://doi.org/10.24435/materialscloud:tb-mf

Description

With increasing interest in Majorana physics for possible quantum bit applications, a large interest has been developed to understand the properties of the interface between a s-type superconductor and a topological insulator. Up to this point the interface analysis was mainly focused on in-situ prepared Josephson junctions, which consist of two coupled single interfaces or to ex-situ fabricated single interface devices. In our work we utilize a novel fabrication process, combining selective area growth and shadow evaporation which allows the characterization of a single in-situ fabricated Nb/(Bi0.15Sb0.85)2Te3 nano interface. The resulting high interface transparency, is apparent by a zero bias conductance increase by a factor of 1.7. Furthermore, we present a comprehensive differential conductance analysis of our single in-situ interface for various magnetic fields, temperatures and gate voltages. Additionally, density functional theory calculations of the superconductor/topological insulator interface are performed in order to explain the peak-like shape of our differential conductance spectra and the origin of the observed smearing of conductance features. This dataset contains the DFT and experimental raw data discussed in the associated publication.

Materials Cloud sections using this data

No Explore or Discover sections associated with this archive record.

Files

File name Size Description
README.md
MD5md5:b743a89366c82b42cab2b8685e9ebae7
3.0 KiB Description of the dataset
Raw_Data_Experiment.zip
MD5md5:e9f663ddc4e583959fc2505773b4351c
16.6 MiB Compressed zip file for the raw experimental data
export.aiida
MD5md5:2ca5232fc4b6e46adaa6ef53ea362632
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
135.7 MiB AiiDA export file for the KS-BdG simulations of this work
denvis.zip
MD5md5:c773c6a24230f23eabb61facbaf2b51f
83.7 MiB Raw data for density visualisation of Figs. 5a and S9b,d

License

Files and data are licensed under the terms of the following license: Creative Commons Attribution 4.0 International.
Metadata, except for email addresses, are licensed under the Creative Commons Attribution Share-Alike 4.0 International license.

External references

Preprint (Paper where the data is discussed)
K. Janßen, S. Liberda, P. Rüßmann, M. Schleenvoigt Xiao Hou, A. Rehman Jalil, F. Lentz, S. Trellenkamp B. Bennemann, E. Zimmermann, G. Mussler, J. Mayer, P. Schüffelgen, L. Plucinski, C.-M. Schneider, S. Blügel, D. Grützmacher, and T. Schäpers, in preparation (2023)
Journal reference (Kohn-Sham Bogoliubov-de Gennes method paper for JuKKR)
P. Rüßmann and S. Blügel, Phys. Rev. B 105, 125143 (2022) doi:10.1103/PhysRevB.105.125143
Journal reference (AiiDA-KKR method paper)
P. Rüßmann, F. Bertoldo, and S. Blügel, npj Comput Mater 7, 13 (2021) doi:10.1038/s41524-020-00482-5
Software (Source code of the JuKKR package)
The JuKKR developers, JuDFTteam/JuKKR: v3.6 (v3.6), Zenodo. (2022) doi:10.5281/zenodo.7284739
Software (Source code of the AiiDA-KKR plugin)
P. Rüßmann, F. Bertoldo, J. Bröder, J. Wasmer, R. Mozumder, J. Chico, and S. Blügel, Zenodo (2021) doi:10.5281/zenodo.3628251

Keywords

superconductivity topological materials topological superconductor Majorana transport experiment density-functional theory