Publication date: Jul 12, 2023
With increasing interest in Majorana physics for possible quantum bit applications, a large interest has been developed to understand the properties of the interface between a s-type superconductor and a topological insulator. Up to this point the interface analysis was mainly focused on in-situ prepared Josephson junctions, which consist of two coupled single interfaces or to ex-situ fabricated single interface devices. In our work we utilize a novel fabrication process, combining selective area growth and shadow evaporation which allows the characterization of a single in-situ fabricated Nb/(Bi0.15Sb0.85)2Te3 nano interface. The resulting high interface transparency, is apparent by a zero bias conductance increase by a factor of 1.7. Furthermore, we present a comprehensive differential conductance analysis of our single in-situ interface for various magnetic fields, temperatures and gate voltages. Additionally, density functional theory calculations of the superconductor/topological insulator interface are performed in order to explain the peak-like shape of our differential conductance spectra and the origin of the observed smearing of conductance features. This dataset contains the DFT and experimental raw data discussed in the associated publication.
No Explore or Discover sections associated with this archive record.
File name | Size | Description |
---|---|---|
README.md
MD5md5:b743a89366c82b42cab2b8685e9ebae7
|
3.0 KiB | Description of the dataset |
Raw_Data_Experiment.zip
MD5md5:e9f663ddc4e583959fc2505773b4351c
|
16.6 MiB | Compressed zip file for the raw experimental data |
export.aiida
MD5md5:2ca5232fc4b6e46adaa6ef53ea362632
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
|
135.7 MiB | AiiDA export file for the KS-BdG simulations of this work |
denvis.zip
MD5md5:c773c6a24230f23eabb61facbaf2b51f
|
83.7 MiB | Raw data for density visualisation of Figs. 5a and S9b,d |
2024.29 (version v3) | Feb 15, 2024 | DOI10.24435/materialscloud:p4-0v |
2023.142 (version v2) | Sep 19, 2023 | DOI10.24435/materialscloud:gt-0r |
2023.110 (version v1) [This version] | Jul 12, 2023 | DOI10.24435/materialscloud:tb-mf |