×

Recommended by

Indexed by

Accelerating GW calculations through machine learned dielectric matrices

Mario Zauchner1*, Johannes Lischner1, Andrew Horsfield1

1 Department of Materials, Imperial College London, United Kingdom

* Corresponding authors emails: mario.zauchner15@imperial.ac.uk
DOI10.24435/materialscloud:gx-m3 [version v2]

Publication date: Jul 27, 2023

How to cite this record

Mario Zauchner, Johannes Lischner, Andrew Horsfield, Accelerating GW calculations through machine learned dielectric matrices, Materials Cloud Archive 2023.119 (2023), https://doi.org/10.24435/materialscloud:gx-m3

Description

The GW approach produces highly accurate quasiparticle energies, but its application to large systems is computationally challenging, which can be largely attributed to the difficulty in computing the inverse dielectric matrix. To address this challenge, we develop a machine learning approach to efficiently predict density-density response functions (DDRF) in materials. For this, an atomic decomposition of the DDRF is introduced as well as the neighbourhood density-matrix descriptor both of which transform in the same way under rotations. The resulting DDRFs are then used to evaluate quasiparticle energies via the GW approach. This technique is called the ML-GW approach. To assess the accuracy of this method, we apply it to hydrogenated silicon clusters and find that it reliably reproduces HOMO-LUMO gaps and quasiparticle energy levels. The accuracy of the predictions deteriorates when the approach is applied to larger clusters than those included in the training set. These advances pave the way towards GW calculations of complex systems, such as disordered materials, liquids, interfaces and nanoparticles.

Materials Cloud sections using this data

No Explore or Discover sections associated with this archive record.

Files

File name Size Description
pseudo.tar.gz
MD5md5:e2668e3bf973bc8f5747c70702d93ab8
71.4 KiB pseudopotentials
1-CDDRFs_train.tar.gz
MD5md5:84c25f3b1f74bea525b88473c8e23a34
1.3 GiB 1-C DDRFs used for training the model.
descriptors_H_train.tar.gz
MD5md5:071b40c03f38df2078ca63bf728189ed
89.9 MiB Hydrogen descriptors
descriptors_Si_train.tar.gz
MD5md5:c5c67683d210e00703d5f6c358ab8172
204.7 MiB Silicon descriptors
inputsperturbed.tar.gz
MD5md5:f071f9e0446443fd6962c99ad077a975
1.2 MiB Input files for perturbed structures.
inputsunperturbed.tar.gz
MD5md5:dacc067d87c27c40e179cf3edfcd63cd
212.2 KiB Input files for unperturbed structures.
structuresunperturbed.tar.gz
MD5md5:80aadb8fc32a1946117a024ec0add23e
100.5 KiB XYZ files of unperturbed structures.
structuresperturbed.tar.gz
MD5md5:617298a8698aeb128f47dab3b9ba19f9
498.5 KiB XYZ files for unperturbed structures.
QPDATA.tar.gz
MD5md5:82e34967aa85d9328b6d9b27507d7ed1
200.2 KiB Quasiparticle data.
README.txt
MD5md5:a4f06420544fad4cf767199192b491f2
1.5 KiB Data description

License

Files and data are licensed under the terms of the following license: Creative Commons Attribution 4.0 International.
Metadata, except for email addresses, are licensed under the Creative Commons Attribution Share-Alike 4.0 International license.

External references

Preprint
Mario G. Zauchner, Andrew Horsfield, and Johannes Lischner. Accelerating GW calculations through machine learned dielectric matrices, 2023. doi:https://doi.org/10.48550/arXiv.2305.02990

Keywords

machine learning ab initio DFT

Version history:

2023.119 (version v2) [This version] Jul 27, 2023 DOI10.24435/materialscloud:gx-m3
2023.113 (version v1) Jul 25, 2023 DOI10.24435/materialscloud:tk-09