There is a newer version of the record available.

Published January 19, 2023 | Version v1
Dataset Open

Topological magnons driven by the Dzyaloshinskii-Moriya interaction in the centrosymmetric ferromagnet Mn₅Ge₃

  • 1. Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, D-52425 Jülich, Germany
  • 2. Faculty of Physics, University of Duisburg-Essen and CENIDE, D-47053 Duisburg, Germany
  • 3. Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
  • 4. Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstr. 1, D-85748 Garching, Germany
  • 5. Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
  • 6. Laboratory for Materials Simulations, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
  • 7. Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at ILL, 71 Avenue des Martyrs, F-38000 Grenoble, France
  • 8. Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institut (PGI-4), JARA-FIT, D-52425 Jülich, Germany
  • 9. Université Grenoble Alpes, CEA, IRIG, MEM, MDN, F-38000 Grenoble, France
  • 10. Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

* Contact person

Description

The phase of the quantum-mechanical wave function can encode a topological structure with wide-ranging physical consequences, such as anomalous transport effects and the existence of edge states robust against perturbations. While this has been exhaustively demonstrated for electrons, properties associated with the elementary quasiparticles in magnetic materials are still underexplored. Here, we show theoretically and via inelastic neutron scattering experiments that the bulk ferromagnet Mn₅Ge₃ hosts gapped topological Dirac magnons. Although inversion symmetry prohibits a net Dzyaloshinskii-Moriya interaction in the unit cell, it is locally allowed and is responsible for the gap opening in the magnon spectrum. This gap is predicted and experimentally verified to close by rotating the magnetization away from the c-axis. Hence, Mn₅Ge₃ is the first realization of a gapped Dirac magnon material in three dimensions. Its tunability by chemical doping or by thin film nanostructuring defines an exciting new platform to explore and design topological magnons.

Files

File preview

files_description.md

All files

Files (6.4 GiB)

Name Apps Size
md5:9c36298c3cadbfae3046a9012eaec8dd
1.2 KiB Preview Download
md5:d39e60cd472ede30680f3577bacedce0
6.3 GiB Preview Download
md5:5c0ccbb4b2271bff6fa43d04a2e3f578
195.0 KiB Preview Download
md5:a6675ae792ba1195cfbf1d8a198328cf
567.7 KiB Preview Download
md5:9513647274239cb9915e241a1b9250ff
16.8 MiB Download
md5:f073cd93c0d1f9882b991557caa514fc
18.1 MiB Download
md5:bb09e854a3a272ebe7cd22ec3c03b610
29.2 MiB Download
md5:c83f9633fea9c5c0bd66d53b052bae38
19.1 MiB Download
md5:16f32a0b0871b43362aa759a9c973754
13.4 MiB Preview Download
md5:160d9e5a6dabd54c7326bd142c5d9f86
320.3 KiB Preview Download
md5:ad36adc44c855f36d903a4f2afd5437e
155.3 KiB Preview Download
md5:2328486f0a8970b47ecbdbafc4eb42fe
703.5 KiB Preview Download
md5:ee93af0eaa06367768bd4a2516ec21e4
35.0 KiB Preview Download
md5:ea8004c9b0d5adb3ff317fb7b5c6a1e6
2.3 KiB Preview Download

References

Preprint (Preprint where the data was used)
M. dos Santos Diat et al., arXiv:2211.16925 (2022), doi: 10.48550/arXiv.2211.16925