Topological magnons driven by the Dzyaloshinskii-Moriya interaction in the centrosymmetric ferromagnet Mn₅Ge₃
Creators
- 1. Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, D-52425 Jülich, Germany
- 2. Faculty of Physics, University of Duisburg-Essen and CENIDE, D-47053 Duisburg, Germany
- 3. Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
- 4. Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstr. 1, D-85748 Garching, Germany
- 5. Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- 6. Laboratory for Materials Simulations, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
- 7. Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at ILL, 71 Avenue des Martyrs, F-38000 Grenoble, France
- 8. Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institut (PGI-4), JARA-FIT, D-52425 Jülich, Germany
- 9. Université Grenoble Alpes, CEA, IRIG, MEM, MDN, F-38000 Grenoble, France
- 10. Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
* Contact person
Description
The phase of the quantum-mechanical wave function can encode a topological structure with wide-ranging physical consequences, such as anomalous transport effects and the existence of edge states robust against perturbations. While this has been exhaustively demonstrated for electrons, properties associated with the elementary quasiparticles in magnetic materials are still underexplored. Here, we show theoretically and via inelastic neutron scattering experiments that the bulk ferromagnet Mn₅Ge₃ hosts gapped topological Dirac magnons. Although inversion symmetry prohibits a net Dzyaloshinskii-Moriya interaction in the unit cell, it is locally allowed and is responsible for the gap opening in the magnon spectrum. This gap is predicted and experimentally verified to close by rotating the magnetization away from the c-axis. Hence, Mn₅Ge₃ is the first realization of a gapped Dirac magnon material in three dimensions. Its tunability by chemical doping or by thin film nanostructuring defines an exciting new platform to explore and design topological magnons.
Files
File preview
files_description.md
All files
Files
(6.4 GiB)
Name | Apps | Size | |
---|---|---|---|
md5:9c36298c3cadbfae3046a9012eaec8dd
|
1.2 KiB | Preview Download | |
md5:d39e60cd472ede30680f3577bacedce0
|
|
6.3 GiB | Preview Download |
md5:5c0ccbb4b2271bff6fa43d04a2e3f578
|
195.0 KiB | Preview Download | |
md5:a6675ae792ba1195cfbf1d8a198328cf
|
567.7 KiB | Preview Download | |
md5:9513647274239cb9915e241a1b9250ff
|
|
16.8 MiB | Download |
md5:f073cd93c0d1f9882b991557caa514fc
|
|
18.1 MiB | Download |
md5:bb09e854a3a272ebe7cd22ec3c03b610
|
|
29.2 MiB | Download |
md5:c83f9633fea9c5c0bd66d53b052bae38
|
|
19.1 MiB | Download |
md5:16f32a0b0871b43362aa759a9c973754
|
13.4 MiB | Preview Download | |
md5:160d9e5a6dabd54c7326bd142c5d9f86
|
320.3 KiB | Preview Download | |
md5:ad36adc44c855f36d903a4f2afd5437e
|
155.3 KiB | Preview Download | |
md5:2328486f0a8970b47ecbdbafc4eb42fe
|
703.5 KiB | Preview Download | |
md5:ee93af0eaa06367768bd4a2516ec21e4
|
35.0 KiB | Preview Download | |
md5:ea8004c9b0d5adb3ff317fb7b5c6a1e6
|
2.3 KiB | Preview Download |
References
Preprint (Preprint where the data was used) M. dos Santos Diat et al., arXiv:2211.16925 (2022), doi: 10.48550/arXiv.2211.16925