Recommended by

Indexed by

Exploring energy landscapes of charge multipoles using constrained density functional theory

Luca Schaufelberger1, Maximilian E. Merkel1*, Aria Mansouri Tehrani1, Nicola A. Spaldin1, Claude Ederer1*

1 Materials Theory, ETH Zürich, 8093 Zürich, Switzerland

* Corresponding authors emails: maximilian.merkel@mat.ethz.ch, claude.ederer@mat.ethz.ch
DOI10.24435/materialscloud:sn-kd [version v1]

Publication date: Sep 15, 2023

How to cite this record

Luca Schaufelberger, Maximilian E. Merkel, Aria Mansouri Tehrani, Nicola A. Spaldin, Claude Ederer, Exploring energy landscapes of charge multipoles using constrained density functional theory, Materials Cloud Archive 2023.141 (2023), https://doi.org/10.24435/materialscloud:sn-kd


We present a method to constrain local charge multipoles within density-functional theory. Such multipoles quantify the anisotropy of the local charge distribution around atomic sites and can indicate potential hidden orders. Our method allows selective control of specific multipoles, facilitating a quantitative exploration of the energetic landscape outside of local minima. Thus, it enables a clear distinction between electronically and structurally driven instabilities. We demonstrate the effectiveness of this method by applying it to charge quadrupoles in the prototypical orbitally ordered material KCuF₃. We quantify intersite multipole-multipole interactions as well as the energy-lowering related to the formation of an isolated local quadrupole. We also map out the energy as a function of the size of the local quadrupole moment around its local minimum, enabling quantification of multipole fluctuations around their equilibrium value. Finally, we study charge quadrupoles in the solid solution KCu₁₋ₓZnₓF₃ to characterize the behavior across the tetragonal-to-cubic transition. Our method provides a powerful tool for studying symmetry breaking in materials with coupled electronic and structural instabilities and potentially hidden orders.

Materials Cloud sections using this data

No Explore or Discover sections associated with this archive record.


File name Size Description
2.2 KiB Description of the contents of data.tar.gz and short instructions to rerun the jupyter notebooks and DFT calculations
166.8 MiB tar.gz archive with all data and scripts needed to reproduce Figs. 3-7 in the paper


Files and data are licensed under the terms of the following license: Creative Commons Attribution 4.0 International.
Metadata, except for email addresses, are licensed under the Creative Commons Attribution Share-Alike 4.0 International license.


multipoles constrained DFT perovskite electronic instability ERC

Version history:

2023.141 (version v1) [This version] Sep 15, 2023 DOI10.24435/materialscloud:sn-kd