There is a newer version of the record available.

Published September 19, 2023 | Version v2
Dataset Open

Single in-situ interface characterization composed of niobium and a selectively grown (Bi1-xSbx)2Te3 topological insulator nanoribbon

  • 1. Peter Grünberg Insitute 9, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
  • 2. Peter Grünberg Insitute 6, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
  • 3. JARA-Fundamentals of Future Information Technology, Jülich-Aachen Research Alliance, Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany
  • 4. Institute of Theoretical Physics and Astrophysics, University of Würzburg, D-97074, Germany
  • 5. Peter Grünberg Institut and Institute for Advanced Simulation (PGI-1/IAS-1), Forschungszentrum Jülich and JARA, D-52425 Jülich
  • 6. Helmholtz Nano Facility, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

* Contact person

Description

With increasing interest in Majorana physics for possible quantum bit applications, a large interest has been developed to understand the properties of the interface between a s-type superconductor and a topological insulator. Up to this point the interface analysis was mainly focused on in-situ prepared Josephson junctions, which consist of two coupled single interfaces or to ex-situ fabricated single interface devices. In our work we utilize a novel fabrication process, combining selective area growth and shadow evaporation which allows the characterization of a single in-situ fabricated Nb/(Bi0.15Sb0.85)2Te3 nano interface. The resulting high interface transparency, is apparent by a zero bias conductance increase by a factor of 1.7. Furthermore, we present a comprehensive differential conductance analysis of our single in-situ interface for various magnetic fields, temperatures and gate voltages. Additionally, density functional theory calculations of the superconductor/topological insulator interface are performed in order to explain the peak-like shape of our differential conductance spectra and the origin of the observed smearing of conductance features. This dataset contains the DFT and experimental raw data discussed in the associated publication.

Files

File preview

files_description.md

All files

Files (236.0 MiB)

Name Apps Size
md5:564782cdc37c20beadd3b0d283bb988e
396 Bytes Preview Download
md5:c773c6a24230f23eabb61facbaf2b51f
83.7 MiB Preview Download
md5:2ca5232fc4b6e46adaa6ef53ea362632
135.7 MiB Download
md5:e9f663ddc4e583959fc2505773b4351c
16.6 MiB Preview Download
md5:b743a89366c82b42cab2b8685e9ebae7
3.0 KiB Preview Download

References

Preprint (Paper where the data is discussed)
K. Janßen, S. Liberda, P. Rüßmann, M. Schleenvoigt Xiao Hou, A. Rehman Jalil, F. Lentz, S. Trellenkamp B. Bennemann, E. Zimmermann, G. Mussler, J. Mayer, P. Schüffelgen, L. Plucinski, C.-M. Schneider, S. Blügel, D. Grützmacher, and T. Schäpers, in preparation (2023)

Journal reference (Kohn-Sham Bogoliubov-de Gennes method paper for JuKKR)
P. Rüßmann and S. Blügel, Phys. Rev. B 105, 125143 (2022), doi: 10.1103/PhysRevB.105.125143

Journal reference (AiiDA-KKR method paper)
P. Rüßmann, F. Bertoldo, and S. Blügel, npj Comput Mater 7, 13 (2021), doi: 10.1038/s41524-020-00482-5

Software (Source code of the JuKKR package)
The JuKKR developers, JuDFTteam/JuKKR: v3.6 (v3.6), Zenodo. (2022), doi: 10.5281/zenodo.7284739

Software (Source code of the AiiDA-KKR plugin)
P. Rüßmann, F. Bertoldo, J. Bröder, J. Wasmer, R. Mozumder, J. Chico, and S. Blügel, Zenodo (2021), doi: 10.5281/zenodo.3628251