Recommended by

Indexed by

Topological magnons driven by the Dzyaloshinskii-Moriya interaction in the centrosymmetric ferromagnet Mn₅Ge₃

M. dos Santos Dias1,2,3*, N. Biniskos4*, F. J. dos Santos5,6*, K. Schmalzl7, J. Persson8, F. Bourdarot9, N. Marzari6,5, S. Blügel1, T. Brückel8, S. Lounis1,2

1 Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, D-52425 Jülich, Germany

2 Faculty of Physics, University of Duisburg-Essen and CENIDE, D-47053 Duisburg, Germany

3 Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom

4 Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstr. 1, D-85748 Garching, Germany

5 Laboratory for Materials Simulations, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

6 Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

7 Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at ILL, 71 Avenue des Martyrs, F-38000 Grenoble, France

8 Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institut (PGI-4), JARA-FIT, D-52425 Jülich, Germany

9 Université Grenoble Alpes, CEA, IRIG, MEM, MDN, F-38000 Grenoble, France

* Corresponding authors emails: m.dos.santos.dias@fz-juelich.de, n.biniskos@fz-juelich.de, flaviano.dossantos@epfl.ch
DOI10.24435/materialscloud:98-m3 [version v2]

Publication date: Nov 10, 2023

How to cite this record

M. dos Santos Dias, N. Biniskos, F. J. dos Santos, K. Schmalzl, J. Persson, F. Bourdarot, N. Marzari, S. Blügel, T. Brückel, S. Lounis, Topological magnons driven by the Dzyaloshinskii-Moriya interaction in the centrosymmetric ferromagnet Mn₅Ge₃, Materials Cloud Archive 2023.170 (2023), https://doi.org/10.24435/materialscloud:98-m3


The phase of the quantum-mechanical wave function can encode a topological structure with wide-ranging physical consequences, such as anomalous transport effects and the existence of edge states robust against perturbations. While this has been exhaustively demonstrated for electrons, properties associated with the elementary quasiparticles in magnetic materials are still underexplored. Here, we show theoretically and via inelastic neutron scattering experiments that the bulk ferromagnet Mn₅Ge₃ hosts gapped topological Dirac magnons. Although inversion symmetry prohibits a net Dzyaloshinskii-Moriya interaction in the unit cell, it is locally allowed and is responsible for the gap opening in the magnon spectrum. This gap is predicted and experimentally verified to close by rotating the magnetization away from the c-axis. Hence, Mn₅Ge₃ is the first realization of a gapped Dirac magnon material in three dimensions. Its tunability by chemical doping or by thin film nanostructuring defines an exciting new platform to explore and design topological magnons.

Materials Cloud sections using this data

No Explore or Discover sections associated with this archive record.


File name Size Description
626 Bytes Top-level description of the data folders and the codes used.
240.1 MiB DFT and spin model simulation data for Mn5Ge3. The data is organized into folders, with the main folders containing a README summarizing their respective contents.


Files and data are licensed under the terms of the following license: Creative Commons Attribution 4.0 International.
Metadata, except for email addresses, are licensed under the Creative Commons Attribution Share-Alike 4.0 International license.


topological magnon spin waves inelastic neutron scattering Dzyaloshinskii-Moriya interaction MARVEL

Version history:

2023.170 (version v2) [This version] Nov 10, 2023 DOI10.24435/materialscloud:98-m3
2023.12 (version v1) Jan 19, 2023 DOI10.24435/materialscloud:xq-5d