Published January 30, 2023 | Version v7
Dataset Open

AI powered, automated discovery of polymer membranes for carbon capture

  • 1. IBM Research Brazil - Avenida República do Chile, 330 - 11o. e 12. andares Rio De Janeiro, RJ 20031-170, Brazil
  • 2. IBM Research Tokyo - 7-7 Shinkawasaki Saiwai-Ku Kawasaki, 14 212-0032, Japan
  • 3. IBM Research - 1101 Kitchawan Rd PO Box 218 Yorktown Heights, NY 10598-0218, USA

* Contact person

Description

Data sets and scripts for computational discovery of polymer membranes for carbon dioxide separation. The training data set with 1,169 homo-polymers provides carbon dioxide permeability, glass transition temperature and half decomposition temperature for each listed material. The output data set contains 784 optimized homo-polymer candidates generated by Inverse Design and Machine Learning techniques. The Jupyter notebook enables the use of the Polymer Property Prediction Engine as a service for generating the properties provided in the training data set.

Files

File preview

files_description.md

All files

Files (575.3 KiB)

Name Size
md5:5d62bc8eecd63778b3af06b6dc97d876
1.1 KiB Preview Download
md5:77a1abfca19c1a53bfc954c0372338b6
550 Bytes Preview Download
md5:f9b879f150fb863789f943d42b09db66
291.6 KiB Preview Download
md5:534cf22962db6838cb93cd023a1c2306
189.1 KiB Preview Download
md5:468d276cf957d2636c5876ac76f9f973
11.1 KiB Preview Download
md5:50e094dcc18de52b03a67cc6d4e8a6c9
81.7 KiB Preview Download

References

Preprint (Preprint where the data is discussed)
R. Giro et al., doi: 10.48550/arXiv.2206.14634

Journal reference (Paper in which the published data is described)
R. Giro, et al, npj Computational Materials 9, 133 (2023), doi: 10.1038/s41524-023-01088-3