High-throughput dataset of impurity adsorption on common catalysts in biomass upgrading applications
Creators
- 1. Catalytic Carbon Transformation & Scale-Up Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
- 2. Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States
* Contact person
Description
An extensive dataset consisting of adsorption energies of pernicious impurities present in biomass upgrading processes on common catalysts and support materials has been generated. This work aims to inform catalyst and process development for the conversion of biomass-derived feedstocks to fuels and chemicals. A high-throughput workflow was developed to execute density functional theory calculations for a diverse set of atomic (Al, B, Ca, Cl, Fe, K, Mg, Mn, N, Na, P, S, Si, Zn) and molecular (COS, H₂S, HCl, HCN, K₂O, KCl, NH₃) species on 35 unique surfaces for transition-metal (Ag, Au, Co, Cu, Fe, Ir, Ni, Pd, Pt, Re, Rh, Ru) and metal-oxide (Al₂O₃, MgO, anatase-TiO₂, rutile-TiO₂, ZnO, ZrO₂) catalysts and supports. Approximately 3,000 unique adsorption geometries were obtained. The data record includes structure and calculation output files for each unique adsorbate geometry on each surface.
Files
File preview
files_description.md
All files
Files
(10.3 GiB)
Name | Size | |
---|---|---|
md5:52b8a75ee9acf2540bdd46f87da9e8e8
|
1.8 KiB | Preview Download |
md5:49fffe9b6ddf38ea95b42b432511174c
|
74.6 MiB | Download |
md5:a03cb90c00e3f190a8edb0059617cd25
|
276.4 MiB | Download |
md5:73bda9a539764d36e222789bda826c29
|
467.4 MiB | Download |
md5:3fccdd1c59ef085ebee62e578394be5c
|
381.5 MiB | Download |
md5:515ae2763eee5d24f28c97f58b898716
|
832.6 MiB | Download |
md5:b792688981ef601420a69b231a1408f1
|
75.6 MiB | Download |
md5:9b4b1048e74d2e9eecdc086d85ad657b
|
197.1 MiB | Download |
md5:ef63a0a958eabb01745878774611662a
|
434.2 MiB | Download |
md5:335576d6283db15e85d1de2679f6636e
|
164.1 MiB | Download |
md5:825b87bf860dfadedda966d7f0c73658
|
6.9 MiB | Preview Download |
md5:b6c41ccbec5f392034261517ba6c90a2
|
54.8 MiB | Download |
md5:061b51cfd339bffd6c87574d18c882d6
|
160.8 MiB | Download |
md5:722f91c5aaf82bb8f81b748f0d91d037
|
282.8 MiB | Download |
md5:073a2fa63e2f5e70fcbd8a0c037c6954
|
96.3 MiB | Download |
md5:101d3a3c9d42daf13e9c2105679a15bf
|
51.5 MiB | Download |
md5:220815375d2ff488f73f2d868e44b0eb
|
156.6 MiB | Download |
md5:b2718777dbbf65c8986a410f24418874
|
175.6 MiB | Download |
md5:8ab8a985d41b4ba93fe2f907620c87ba
|
52.9 MiB | Download |
md5:bac3ac1abdbacb509289566667b64e27
|
84.6 MiB | Download |
md5:b865f02398846875ce759a96709ca410
|
193.6 MiB | Download |
md5:b0f79edc1348b57eb29b73e05eeed473
|
233.6 MiB | Download |
md5:4ca36108c165696b59c45f7df8036cf7
|
69.2 MiB | Download |
md5:8c5505ebcf3e05a290b5b1be9960beb1
|
226.6 MiB | Download |
md5:b12a4d51ef1d2c2635bea6a0db3371d0
|
271.0 MiB | Download |
md5:de9da3cd3220b926621b855b566204d2
|
54.2 MiB | Download |
md5:e8e29112db258216c06e2e2140df5260
|
183.3 MiB | Download |
md5:a925c7040ceed070022e0965a7f4f483
|
236.9 MiB | Download |
md5:1f9279388abfa4c797aaf0cc2054f36a
|
193.8 MiB | Download |
md5:1533bd3e64a097d4f823606f7d141635
|
1.4 KiB | Preview Download |
md5:16359087430617b903b99ee1523cf236
|
51.5 MiB | Download |
md5:aebbaf1d7eb1a3d9eddbd3d9e6bce27a
|
168.9 MiB | Download |
md5:ddeb0d02206175f5b678f44eb8db69d9
|
197.2 MiB | Download |
md5:b25cc3c05a5ea33c09585f6bbee25852
|
834.7 MiB | Download |
md5:5fe11cee3054d34438944066355e5049
|
136.5 MiB | Download |
md5:a4696b00525b0c91139c57a7bbe064f8
|
229.8 MiB | Download |
md5:9dc77595a608a9648030158ae53fb7f0
|
418.4 MiB | Download |
md5:3fc501522ce0c85c050d9b9b52c0471f
|
2.8 GiB | Download |
References
Preprint (Paper in which the dataset is discussed.) M.A. Nolen, S.A. Tacey, M.A. Arellano-Treviño, K.M. Van Allsburg, C.A. Farberow (2024). In preparation.