Published August 27, 2024 | Version v2
Dataset Open

High-throughput dataset of impurity adsorption on common catalysts in biomass upgrading applications

  • 1. Catalytic Carbon Transformation & Scale-Up Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
  • 2. Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States

* Contact person

Description

An extensive dataset consisting of adsorption energies of pernicious impurities present in biomass upgrading processes on common catalysts and support materials has been generated. This work aims to inform catalyst and process development for the conversion of biomass-derived feedstocks to fuels and chemicals. A high-throughput workflow was developed to execute density functional theory calculations for a diverse set of atomic (Al, B, Ca, Cl, Fe, K, Mg, Mn, N, Na, P, S, Si, Zn) and molecular (COS, H₂S, HCl, HCN, K₂O, KCl, NH₃) species on 35 unique surfaces for transition-metal (Ag, Au, Co, Cu, Fe, Ir, Ni, Pd, Pt, Re, Rh, Ru) and metal-oxide (Al₂O₃, MgO, anatase-TiO₂, rutile-TiO₂, ZnO, ZrO₂) catalysts and supports. Approximately 3,000 unique adsorption geometries were obtained. The data record includes structure and calculation output files for each unique adsorbate geometry on each surface.

Files

File preview

files_description.md

All files

Files (10.3 GiB)

Name Size
md5:52b8a75ee9acf2540bdd46f87da9e8e8
1.8 KiB Preview Download
md5:49fffe9b6ddf38ea95b42b432511174c
74.6 MiB Download
md5:a03cb90c00e3f190a8edb0059617cd25
276.4 MiB Download
md5:73bda9a539764d36e222789bda826c29
467.4 MiB Download
md5:3fccdd1c59ef085ebee62e578394be5c
381.5 MiB Download
md5:515ae2763eee5d24f28c97f58b898716
832.6 MiB Download
md5:b792688981ef601420a69b231a1408f1
75.6 MiB Download
md5:9b4b1048e74d2e9eecdc086d85ad657b
197.1 MiB Download
md5:ef63a0a958eabb01745878774611662a
434.2 MiB Download
md5:335576d6283db15e85d1de2679f6636e
164.1 MiB Download
md5:825b87bf860dfadedda966d7f0c73658
6.9 MiB Preview Download
md5:b6c41ccbec5f392034261517ba6c90a2
54.8 MiB Download
md5:061b51cfd339bffd6c87574d18c882d6
160.8 MiB Download
md5:722f91c5aaf82bb8f81b748f0d91d037
282.8 MiB Download
md5:073a2fa63e2f5e70fcbd8a0c037c6954
96.3 MiB Download
md5:101d3a3c9d42daf13e9c2105679a15bf
51.5 MiB Download
md5:220815375d2ff488f73f2d868e44b0eb
156.6 MiB Download
md5:b2718777dbbf65c8986a410f24418874
175.6 MiB Download
md5:8ab8a985d41b4ba93fe2f907620c87ba
52.9 MiB Download
md5:bac3ac1abdbacb509289566667b64e27
84.6 MiB Download
md5:b865f02398846875ce759a96709ca410
193.6 MiB Download
md5:b0f79edc1348b57eb29b73e05eeed473
233.6 MiB Download
md5:4ca36108c165696b59c45f7df8036cf7
69.2 MiB Download
md5:8c5505ebcf3e05a290b5b1be9960beb1
226.6 MiB Download
md5:b12a4d51ef1d2c2635bea6a0db3371d0
271.0 MiB Download
md5:de9da3cd3220b926621b855b566204d2
54.2 MiB Download
md5:e8e29112db258216c06e2e2140df5260
183.3 MiB Download
md5:a925c7040ceed070022e0965a7f4f483
236.9 MiB Download
md5:1f9279388abfa4c797aaf0cc2054f36a
193.8 MiB Download
md5:1533bd3e64a097d4f823606f7d141635
1.4 KiB Preview Download
md5:16359087430617b903b99ee1523cf236
51.5 MiB Download
md5:aebbaf1d7eb1a3d9eddbd3d9e6bce27a
168.9 MiB Download
md5:ddeb0d02206175f5b678f44eb8db69d9
197.2 MiB Download
md5:b25cc3c05a5ea33c09585f6bbee25852
834.7 MiB Download
md5:5fe11cee3054d34438944066355e5049
136.5 MiB Download
md5:a4696b00525b0c91139c57a7bbe064f8
229.8 MiB Download
md5:9dc77595a608a9648030158ae53fb7f0
418.4 MiB Download
md5:3fc501522ce0c85c050d9b9b52c0471f
2.8 GiB Download

References

Preprint (Paper in which the dataset is discussed.)
M.A. Nolen, S.A. Tacey, M.A. Arellano-Treviño, K.M. Van Allsburg, C.A. Farberow (2024). In preparation.