Publication date: Oct 01, 2024
A strong driving force for charge separation and transfer in semiconductors is essential for designing effective photoelectrodes for solar energy conversion. While defect engineering and polarization alignment can enhance this process, their potential interference within a photoelectrode remains unclear. Here we show that oxygen vacancies in bismuth vanadate (BiVO4) can create defect dipoles due to a disruption of symmetry. The modified photoelectrodes exhibit a strong correlation between charge separation and transfer capability and external electrical poling, which is not seen in unmodified samples. Applying poling at -150 Volt boosts charge separation and transfer efficiency to over 90 %. A photocurrent density of 6.3 mA cm-2 is achieved on the photoelectrode after loading with a nickel-iron oxide-based cocatalyst. Furthermore, using generated holes for methane partial oxidation can produce methanol with a Faradaic efficiency of approximately 6 %. These findings provide valuable insights into the photoelectrocatalytic conversion of greenhouse gases into valuable chemical products.
No Explore or Discover sections associated with this archive record.
File name | Size | Description |
---|---|---|
CONTCAR_BVO
MD5md5:f3eecfc851e9e4d4e2d92771c9bb5d65
|
10.6 KiB | atomic coordination of BiVO4 in Figure 1a |
CONTCAR_BVO-Vo
MD5md5:fc26d7ebee4d35c63e68f0a564a5f50f
|
10.5 KiB | atomic coordination of BiVO4 with oxygen vacancies in Figure 1b |
CONTCAR_BVO-1c
MD5md5:5182bddf437405846834e5c979aa8d3e
|
2.9 KiB | atomic coordination of BiVO4 in Figure 1c |
CONTCAR_BVO-Vo-1c
MD5md5:6579003e6ba28efdb026a1b9eefc817f
|
2.8 KiB | atomic coordination of BiVO4 with oxygen vacancies in Figure 1c |
NCOMMS-24-22524A.xlsx
MD5md5:9b1ff5cbf976aa54ba34b7c0cc8c2923
|
4.4 MiB | original data for the plots in all figures |
2024.145 (version v1) [This version] | Oct 01, 2024 | DOI10.24435/materialscloud:gf-jd |