Published October 28, 2024 | Version v1
Dataset Open

Engineering epitaxial interfaces for topological insulator – superconductor hybrid devices with Al electrodes

  • 1. Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany
  • 2. JARA-FIT (Fundamentals of Future Information Technology), Jülich-Aachen Research Alliance, Forschungszentrum Jülich and RWTH Aachen University, 52425 Jülich, Germany
  • 3. Peter Grünberg Institute (PGI-1), Forschungszentrum Jülich, 52425 Jülich, Germany
  • 4. Institute for Theoretical Physics and Astrophysics, University of Würzburg, 97074 Würzburg, Germany
  • 5. Ernst Ruska-Centre (ER-C) for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
  • 6. Central Facility for Electron Microscopy (GFE), RWTH Aachen University, 52074 Aachen, Germany

* Contact person

Description

Proximity-induced superconductivity in hybrid devices of topological insulators and superconductors offers a promising platform for the pursuit of elusive topological superconductivity and its anticipated applications, such as fault-tolerant quantum computing. To study and harness such hybrid devices, a key challenge is the realization of highly functional material interfaces with a suitable superconductor featuring 2e-periodic parity-conserving transport to ensure a superconducting hard-gap free of unpaired electrons, which is important for Majorana physics. A superconductor well-known for this characteristic is Al, however, its direct integration into devices based on tetradymite topological insulators has so far been found to yield non-transparent interfaces. By focusing on Bi₂Te₃-Al heterostructures, this study identifies detrimental interdiffusion processes at the interface through atomically resolved structural and chemical analysis, and showcase their mitigation by leveraging different interlayers – namely Nb, Ti, Pd, and Pt – between Bi₂Te₃ and Al. Through structural transformation of the interlayer materials (X) into their respective tellurides (XTe₂) atomically-sharp epitaxial interfaces are engineered and further characterized in low-temperature transport experiments on Al-X-Bi₂Te₃-X-Al Josephson junctions and in complementary density functional theory calculations. By demonstrating functional interfaces between Bi₂Te₃ and Al, this work provides key insights and paves the way for the next generation of sophisticated topological devices.

Files

File preview

All files

Files (4.9 GiB)

Name Apps Size
md5:334e7187e1c8e13833a0e03109131bc2
1.0 KiB Preview Download
md5:80055ebeee39d081054eee60458f6d2b
4.9 GiB Download
md5:a5677d10d3df61f1befb998f15447934
7.5 MiB Preview Download
md5:c06734740b87a7e7b0127a1a618e368e
186.6 KiB Preview Download
md5:a44c9f183e139b521253165d31249405
4.7 KiB Preview Download
md5:f38b4411f7bc60a5b4069ec2b22795cc
5.2 KiB Preview Download
md5:647772f8e789a742db1e184934e29aff
1.4 KiB Download
md5:f6ec3cf5b545b24d8be05f635e0c815b
1.6 KiB Download
md5:e03e64926245e2ac7e774f78b7f5ab2a
1.4 KiB Download
md5:1187d157e2dea5e56ab78c199f6c265b
1.6 KiB Download
md5:039dfccf9c4ea9231aa1500f420bcf78
1.4 KiB Download
md5:6f67b31c598f9237396707d21fada108
1.6 KiB Download
md5:bc78f7c75aa5b092f8109b2d8c3b7220
1.4 KiB Download
md5:f4a061dc7057eb69100b1afc2a367da4
1.6 KiB Download
md5:ec596de0ba933a8eb7f450f2c0f1bede
14.6 MiB Preview Download
md5:f0298db011633180e41be2d47e0c5dbe
10.6 KiB Download

References

Preprint (Preprint where the data is discussed)
A. R. Jalil, T. W. Schmitt, P. Rüßmann, X.-K. Wei, B. Frohn, M. Schleenvoigt, W. Wittl, X. Hou, A. Schmidt, K. Underwood, G. Bihlmayer, M. Luysberg, J. Mayer, S. Blügel, D. Grützmacher, P. Schüffelgen, under review (2024)

Software (Source code for the AiiDA-KKR plugin)
P. Rüßmann, F. Bertoldo, J. Bröder, J. Wasmer, R. Mozumder, J. Chico, and S. Blügel, Zenodo (2021), doi: 10.5281/zenodo.3628251

Journal reference (AiiDA-KKR method paper)
P. Rüßmann, F. Bertoldo, and S. Blügel, The AiiDA-KKR plugin and its application to high-throughput impurity embedding into a topological insulator. npj Comput Mater 7, 13 (2021), doi: 10.1038/s41524-020-00482-5

Software (Source code of the JuKKR code)
The JuKKR developers, JuDFTteam/JuKKR: v3.6 (v3.6), Zenodo. (2022), doi: 10.5281/zenodo.7284739

Journal reference (Kohn-Sham Bogoliubov-de Gennes method paper for JuKKR)
P. Rüßmann and S. Blügel, Phys. Rev. B 105, 125143 (2022), doi: 10.1103/PhysRevB.105.125143

Software (Source code of the FLEUR code)
D. Wortmann et al., FLEUR, Zenodo (2024), doi: 10.5281/zenodo.7576163