Published January 31, 2024 | Version v1
Dataset Open

Different ordering temperature of the Mn antisite sublattice in the intrinsic magnetic topological insulators of the MnBi₂Te₄ family

  • 1. Leibniz IFW Dresden, Helmholtzstraße 20, D-01069 Dresden, Germany
  • 2. Institut für Festkörper und Materialphysik, Technische Universität Dresden, 01062 Dresden, Germany
  • 3. Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco delle Scienze 7A, I-43124 Parma, Italy
  • 4. Würzburg-Dresden Cluster of Excellence ct.qmat, Germany
  • 5. Donostia International Physics Center, 20018 Donostia-San Sebastiàn, Spain
  • 6. Centro de Fısica de Materiales (CFM-MPC), Centro Mixto (CSIC-UPV/EHU), 20018 Donostia-San Sebastiàn, Spain
  • 7. Saint Petersburg State University, 199034 Saint Petersburg, Russia
  • 8. Departamento de Polimeros y Materiales Avanzados: Fisica, Quımica y Tecnologıa, Facultad de Ciencias Quımicas, Universidad del Paıs Vasco UPV/EHU, 20018 Donostia-San Sebastiàn, Spain
  • 9. Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
  • 10. Baku State University, AZ1148 Baku, Azerbaijan
  • 11. Institute of Physics Ministry of Science and Education Republic of Azerbaijan, AZ1143 Baku, Azerbaijan
  • 12. Laboratory for Muon Spin Spectroscopy, Paul-Scherrer-Institute, CH-5232 Villigen PSI, Switzerland
  • 13. Van der Waals-Zeeman Institute, Department of Physics and Astronomy, University of Amsterdam, Science Park 094, 1098 XH Amsterdam, The Netherlands

* Contact person

Description

Magnetic topological insulators (TIs) promise a wealth of applications in spin-based technologies, relying on the novel quantum phenomena provided by their topological properties. Particularly promising is the (MnBi₂Te₄)(Bi₂Te₃)n layered family of established intrinsic magnetic TIs that can flexibly realize various magnetic orders and topological states. High tunability of this material platform is enabled by manganese–pnictogen intermixing, whose amounts and distribution patterns are controlled by synthetic conditions. Positive implication of the strong intermixing in MnSb₂Te₄ is the interlayer exchange coupling switching from antiferromagnetic to ferromagnetic, and the increasing magnetic critical temperature. On the other side, intermixing also implies atomic disorder which may be detrimental for applications. Here we employ nuclear magnetic resonance and muon spin spectroscopy, sensitive local probe techniques, to scrutinize the impact of the intermixing on the magnetic properties of (MnBi₂Te₄)(Bi₂Te₃)n and MnSb₂Te₄. Our measurements not only confirm the opposite alignment between the Mn magnetic moments on native sites and antisites in the ground state of MnSb₂Te₄, but for the first time directly show the same alignment in (MnBi₂Te₄)(Bi₂Te₃)n with n = 0, 1 and 2. Moreover, for all compounds, we find the static magnetic moment of the Mn antisite sublattice to disappear well below the intrinsic magnetic temperature, leaving a homogeneous magnetic structure undisturbed by the intermixing. Our findings provide microscopic understanding of the crucial role played by Mn–Bi intermixing in (MnBi₂Te₄)(Bi₂Te₃)n and offer pathways to optimizing the magnetic gap in its surface states. The data contained in this archive consists of both the µSR and NMR experimental data including DFT calculations for the muon and hyperfine coupling interactions, all required to reproduce the results and figures presented in this article.

Files

File preview

files_description.md

All files

Files (720.8 MiB)

Name Size
md5:327cbddb323930e2c9c7d4ad369b5e59
170 Bytes Preview Download
md5:58a295a425fd990c983a7422d8af0a28
720.8 MiB Download
md5:0a0df267bf8cc761e6b7fc2da4e67fbe
2.0 KiB Preview Download

References

Preprint
M. Sahoo, I. J. Onuorah, L. C. Folkers, E. V. Chulkov, M. M. Otrokov, Z. S. Aliev, I. R. Amiraslanov, A. Wolter-Giraud, B. Büchner, L. T. Corredor, C. Wang, Z. Salman, A. Isaeva, R. D. Renzi, and G. Allodi, "in preparation"