The initial stages of cement hydration at the molecular level
Creators
- 1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China
- 2. School of Molecular Sciences, University of Western Australia, Perth, 6009, Australia
- 3. School of Metallurgy and Environment, Central South University, Changsha 410083, China
- 4. Department of Physics, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
* Contact person
Description
Cement hydration is crucial for the strength development of cement-based materials; however, the mechanism that underlies this complex reaction remains poorly understood at the molecular level. An in-depth understanding of cement hydration is required for the development of environmentally friendly cement and consequently the reduction of carbon emissions in the cement industry. Here, we use molecular dynamics simulations with a reactive force field to investigate the initial hydration processes of tricalcium silicate (C₃S) and dicalcium silicate (C₂S) up to 40 ns. Our simulations provide theoretical support for the rapid initial hydration of C₃S compared to C₂S at the molecular level. The dissolution pathways of calcium ions in C₃S and C₂S are revealed, showing that, two dissolution processes are required for the complete dissolution of calcium ions in C₃S. Our findings promote the understanding of the calcium dissolution stage and serve as a valuable reference for the investigation of the initial cement hydration.
Files
File preview
files_description.md
All files
References
Journal reference Xinhang Xu, Chongchong Qi, Xabier M. Aretxabaleta, Chundi Ma, Dino Spagnoli, Hegoi Manzano. Nature Communications. (Accepted), doi: 10.1038/s41467-024-46962-w