Publication date: May 16, 2024
In this record we provide the data to support our recent finding on the intercalation of gold chloride underneath atomically precise graphene nanoribbons (GNRs). GNRs have a wide range of electronic properties that depend sensitively on their chemical structure. Several types of GNRs have been synthesized on metal surfaces through selective surface-catalyzed reactions. The resulting GNRs are adsorbed on the metal surface, which may lead to hybridization between the GNR orbitals and those of the substrate. This makes investigation of the intrinsic electronic properties of GNRs more difficult, and also rules out capacitive gating. In the manuscript where the data presented here is discussed, we demonstrate the formation of a dielectric gold chloride adlayer that can intercalate underneath GNRs on the Au(111) surface. The intercalated gold chloride adlayer electronically decouples the GNRs from the metal and leads to a substantial hole doping of the GNRs. Our results introduce an easily accessible tool in the in situ characterization of GNRs grown on Au(111) that allows for exploration of their electronic properties in a heavily hole-doped regime.
No Explore or Discover sections associated with this archive record.
File name | Size | Description |
---|---|---|
export.aiida
MD5md5:3fc361d02ba59df987158687d4ac130f
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
|
295.5 MiB | AiiDA archive containing all the nodes of the calculations shown in the manuscript |
data.tgz
MD5md5:1d04287c3e52573949d08075041bb47b
|
31.0 MiB | tar file containing the files detailed in the ReadMe file |
ReadMe.yaml
MD5md5:8fbbc974c1c862ead930bf6bf24350bb
|
24.1 KiB | Readme file in yamls format detailing the content of the record |
2024.74 (version v1) [This version] | May 16, 2024 | DOI10.24435/materialscloud:y5-et |