Recommended by

Indexed by

Doping-Induced Electronic and Structural Phase Transition in the Bulk Weyl semimetal Mo1-xWxTe2

O. Fedchenko1, F. K. Diekmann2, P. Rüßmann3,4*, M. Kallmayer5, L. Odenbreit1, S. M. Souliou6, M. Frachet6, A. Winkelmann7, M. Merz6, S. Chernov8,9, D. Vasilyev1, D. Kutnyakhov10, O. Tkach1, Ya. Lytvynenko1,11, K. Medjanik1, C. Schlueter8, A. Gloskovskii8, T. R. F. Peixoto8, M. Hoesch8, M. Le Tacon6, Y. Mokrousov1,4, K. Roßnagel2,12, G. Schönhense1, H.-J. Elmers1

1 Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany

2 Institute for Experimental and Applied Physics, Christian-Albrechts-Universität Kiel, Germany

3 Institute of Theoretical Physics and Astrophysics, University of Würzburg, D-97074, Germany

4 Peter Grünberg Institut and Institute for Advanced Simulation (PGI-1/IAS-1), Forschungszentrum Jülich and JARA, D-52425 Jülich

5 Surface Concept GmbH, Mainz, Germany

6 Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Karlsruhe, Germany

7 Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Kraków, Poland

8 Deutsches Elektronen-Synchrotron, DESY, Hamburg, Germany

9 Department of Physics and Astronomy, Stony Brook University, Stony Brook, USA

10 Deutsches Elektronen-Synchrotron, Center for Free-Electron Laser Science, Hamburg, Germany

11 Institute of Magnetism of the NAS of Ukraine and MES of Ukraine, 03142 Kyiv, Ukraine

12 Ruprecht Haensel Laboratory, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany

* Corresponding authors emails: p.ruessmann@fz-juelich.de
DOI10.24435/materialscloud:ks-0h [version v1]

Publication date: Jun 24, 2024

How to cite this record

O. Fedchenko, F. K. Diekmann, P. Rüßmann, M. Kallmayer, L. Odenbreit, S. M. Souliou, M. Frachet, A. Winkelmann, M. Merz, S. Chernov, D. Vasilyev, D. Kutnyakhov, O. Tkach, Ya. Lytvynenko, K. Medjanik, C. Schlueter, A. Gloskovskii, T. R. F. Peixoto, M. Hoesch, M. Le Tacon, Y. Mokrousov, K. Roßnagel, G. Schönhense, H.-J. Elmers, Doping-Induced Electronic and Structural Phase Transition in the Bulk Weyl semimetal Mo1-xWxTe2, Materials Cloud Archive 2024.95 (2024), https://doi.org/10.24435/materialscloud:ks-0h


A comprehensive study of the electronic and structural phase transition from 1T` to Td in the bulk Weyl semimetal Mo1-xWxTe2 at different doping concentrations has been carried out using time-of-flight momentum microscopy (including circular and linear dichroism), X-ray photoelectron spectroscopy, X-ray photoelectron diffraction, X-ray diffraction (XRD), angle-resolved Raman spectroscopy, transport measurements (including longitudinal elastoresistance), density functional theory (DFT) and Kikuchi pattern calculations. High-resolution, angle-resolved photoemission spectroscopy at 20 K reveals surface electronic states, which are indicative for topological Fermi arcs. Their dispersion agrees with the position of Weyl points predicted by DFT calculations based on the precise crystal structure of our samples obtained from XRD measurements. Raman spectroscopy confirms the inversion symmetry breaking for the Td-phase, which is a necessary condition for the emergence of topological states. Transport measurements show that increasing the doping concentration from 2 to 9 % leads to an increase in the temperature of the phase transition from 1T` to Td from 230 K to 270 K. Magnetoresistance and longitudinal elastoresistance show significantly increased values in the Td-phase. This dataset contains the raw data discussed in the manuscript with the same title.

Materials Cloud sections using this data

No Explore or Discover sections associated with this archive record.


File name Size Description
748 Bytes Description of the dataset
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
216.5 MiB AiiDA export file for the DFT data of this work


Files and data are licensed under the terms of the following license: Creative Commons Attribution 4.0 International.
Metadata, except for email addresses, are licensed under the Creative Commons Attribution Share-Alike 4.0 International license.

External references

Preprint (Paper where the data is discussed)
O. Fedchenko, F.K. Diekmann, P. Rüßmann, M. Kallmayer, L. Odenbreit, S.M. Souliou, M. Frachet, A. Winkelmann, M. Merz, D. Vasilyev, D. Kutnyakhov, S. Chernov, C. Schlueter, A. Gloskovskii, T.R.F. Peixoto, M. Hoesch, O. Tkach, Ya. Lytvynenko, M. Le Tacon, Y. Mokrousov, K. Roßnagel, G. Schönhense, H.-J. Elmers, arXiv:2310.10593 (2023) doi:10.48550/arXiv.2310.10593
Software (Source code of the JuKKR code)
The JuKKR developers, JuDFTteam/JuKKR: v3.6 (v3.6), Zenodo. (2022) doi:10.5281/zenodo.7284739
Software (Source code for the AiiDA-KKR plugin)
P. Rüßmann, F. Bertoldo, J. Bröder, J. Wasmer, R. Mozumder, J. Chico, and S. Blügel, Zenodo (2021) doi:10.5281/zenodo.3628251
Journal reference (AiiDA-KKR method paper)
P. Rüßmann, F. Bertoldo, and S. Blügel, The AiiDA-KKR plugin and its application to high-throughput impurity embedding into a topological insulator. npj Comput Mater 7, 13 (2021) doi:10.1038/s41524-020-00482-5


DFT KKR CPA TMDC Weyl semimetal alloy

Version history:

2024.95 (version v1) [This version] Jun 24, 2024 DOI10.24435/materialscloud:ks-0h