×

Recommended by

Indexed by

Understanding the origin of superconducting dome in electron-doped MoS₂ monolayer

Nina Girotto Erhardt1*, Jan Berges2*, Samuel Poncé3,4, Dino Novko1

1 Centre for Advanced Laser Techniques, Institute of Physics, 10000 Zagreb, Croatia

2 U Bremen Excellence Chair, Bremen Center for Computational Materials Science, and MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany

3 European Theoretical Spectroscopy Facility, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium

4 WEL Research Institute, 1300 Wavre, Belgium

* Corresponding authors emails: nina.girotto@uclouvain.be, jan.berges@uni-bremen.de
DOI10.24435/materialscloud:z1-aw [version v1]

Publication date: Mar 19, 2025

How to cite this record

Nina Girotto Erhardt, Jan Berges, Samuel Poncé, Dino Novko, Understanding the origin of superconducting dome in electron-doped MoS₂ monolayer, Materials Cloud Archive 2025.44 (2025), https://doi.org/10.24435/materialscloud:z1-aw

Description

We investigate the superconducting properties of molybdenum disulphide (MoS₂) monolayer across a broad doping range, successfully recreating the so far unresolved superconducting dome. Our first-principles findings reveal several dynamically stable phases across the doping-dependent phase diagram. We observe a doping-induced increase in the superconducting transition temperature Tc, followed by a reduction in Tc due to the formation of charge density waves (CDWs), polaronic distortions, and structural transition from the H to the 1T′ phase. Our work reconciles various experimental observations of CDWs in MoS₂ with its doping-dependent superconducting dome structure, which occurs due to the 1×1 H to 2×2 CDW phase transition.

Materials Cloud sections using this data

No Explore or Discover sections associated with this archive record.

Files

File name Size Description
README.md
MD5md5:3b22839753c99e088435274842d0449d
1.1 KiB Overview of contents
fig2a-d.tar.gz
MD5md5:4cdb4ac5e83aaa4e3067d6304cb5e97e
723.3 KiB Data of Fig. 2(a–d)
fig2e.tar.gz
MD5md5:0514e9cf3bd294ef9f49e5d79912aefb
8.4 MiB Code and data of Fig. 2(e)
fig3.tar.gz
MD5md5:dbf67323c8b26e984707a9ab512f979c
208.5 KiB Data of Fig. 3
fig4.tar.gz
MD5md5:ad524c1f940d23e3280ac430a32fe286
505.8 KiB Data of Fig. 4
fig5.tar.gz
MD5md5:25bf433a60498198d5aec2e36ba287bd
2.1 KiB Data of Fig. 5
fig6.tar.gz
MD5md5:811cb386a1b660699eae0a119a49e75b
97.0 MiB Code and data of Fig. 6
figS11.tar.gz
MD5md5:33e5ae11255efa1536913ee7b760da56
733.2 KiB Data of Supplementary Figure 11
input.tar.gz
MD5md5:6f541b537c66c7de1f3f92ef30242a17
197.3 KiB Quantum ESPRESSO input files

License

Files and data are licensed under the terms of the following license: Creative Commons Attribution 4.0 International.
Metadata, except for email addresses, are licensed under the Creative Commons Attribution Share-Alike 4.0 International license.

External references

Preprint (Preprint where the data is discussed)

Keywords

PRACE superconductivity charge density wave polarons nonadiabaticity first principles lattice model Migdal-Eliashberg 2D materials

Version history:

2025.44 (version v1) [This version] Mar 19, 2025 DOI10.24435/materialscloud:z1-aw