Highly anisotropic interlayer magnetoresitance in ZrSiS nodal-line Dirac semimetal

Shengnan Zhang1*, Quansheng Wu1*, Oleg V. Yazyev1*

1 Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland and National Centre for Computational Design and Discovery of Novel Materials MARVEL, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

* Corresponding authors emails: , ,
DOI10.24435/materialscloud:2019.0074/v1 [version v1]

Publication date: Oct 29, 2019

How to cite this record

Shengnan Zhang, Quansheng Wu, Oleg V. Yazyev, Highly anisotropic interlayer magnetoresitance in ZrSiS nodal-line Dirac semimetal, Materials Cloud Archive 2019.0074/v1 (2019), doi: 10.24435/materialscloud:2019.0074/v1.


In this work, we investigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. Combining the Fermi surfaces calculated from first principles with the Boltzmann’s semiclassical transport theory, we reproduce all the prominent features of the unusual behavior of the in-plane and out-of-plane AMR.We can conclude that the dominant contribution the cusplike AMR lies in open orbits of the hole pocket and, in general, AMR is strongly influenced by charge compensation effect and the off-diagonal conductivity tensor elements, which give rise to peculiar butterfly-shaped AMR.

Materials Cloud sections using this data

No Explore or Discover sections associated with this archive record.


File name Size Description
2.0 MiB This file contains a brief description(readme) and input data necessary to reproduce fig4 (the numerical simulation part) in the manuscript.
545 Bytes a brief description(readme) for the data


Files and data are licensed under the terms of the following license: Creative Commons Attribution 4.0 International.

External references

Journal reference (Paper in which the data is discussed)
M. Novak , S. N. Zhang, F. Orbanic ́, N. Biliškov, G. Eguchi, S. Paschen, A. Kimura, X. X. Wang, T. Osada, K. Uchida, M. Sato, Q. S. Wu, O. V. Yazyev, and I. Kokanovic, PHYSICAL REVIEW B 100.085137 (2019). doi:10.1103/PhysRevB.100.085137


MARVEL WannierTools magnetoresistance Boltzmann transport theory first principles Fermi surface

Version history:

2019.0074/v1 (version v1) [This version] Oct 29, 2019 DOI10.24435/materialscloud:2019.0074/v1