Achieving 19% efficiency in nonfused ring electron acceptor solar cells via solubility control of donor and acceptor crystallisation
Creators
- Zeng, Rui1
- Zhang, Ming1
- Wang, Xiaodong2
-
Zhu, Lei1
*
- Hao, Bonan1
- Zhong, Wenkai1
- Zhou, Guanqing1
- Deng, Jiawei1
- Tan, Senke1
- Zhuang, Jiaxing1
- Han, Fei1
- Zhang, Anyang1
- Zhou, Zichun1
- Xue, Xiaonan3
- Xu, Shengjie1
- Xu, Jinqiu1
- Liu, Yahui2
- Lu, Hao2
- Wu, Xuefei4
- Wang, Cheng4
- Fink, Zachary4, 5
- Russell, Thomas P.4, 5
- Jing, Hao3
- Zhang, Yongming6, 1
-
Bo, Zhishan2, 7
*
-
Liu, Feng6, 1, 8
*
- 1. School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China.
- 2. College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
- 3. Shanghai OPV Solar New Energy Technology Co., Ltd., Shanghai 201210, China.
- 4. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- 5. Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA01003, USA.
- 6. State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong 256401, China.
- 7. Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
- 8. Suzhou Laboratory, Suzhou 215100, China.
* Contact person
Description
Nonfused ring electron acceptors (NFREAs) are interesting n-type near infrared (NIR) photoactive semiconductors with strong molecular absorption and easy synthetic route. However, the low backbone planarity and bulky substitution make NFREA less crystalline, which significantly retards charge transport and the formation of bicontinuous morphology in organic photovoltaic device. Donor and acceptor solubility in different solvents is studied, and the created solubility hysteresis can induce the formation of the highly crystalline donor polymer fibril to purify the NFREA phase, thus a better bicontinuous morphology with improved crystallinity. Based on these results, a general solubility hysteresis sequential condensation (SHSC) thin film fabrication methodology is established to produce highly uniform and smooth photoactive layer. The well-defined interpenetrating network morphology afforded a record efficiency of 19.02%, which is ~22% improvement comparing to conventional device fabrication. A high efficiency retention (Pr) value of 92.3% is achieved in 1 cm² device (17.28% efficiency).
Files
File preview
files_description.md
All files
Files
(10.1 MiB)
Name | Size | |
---|---|---|
md5:ce1bedd4c7b7f0b11fbaa89084363226
|
3.5 KiB | Preview Download |
md5:07debb2345658cef8b9189158f2c5635
|
9.0 KiB | Download |
md5:c36c81a57f083dd033ae37d99466e68f
|
8.8 KiB | Download |
md5:16d142c0841dd462430a671fd7384227
|
60.0 KiB | Download |
md5:b5746d7e16d554bc2ee4998d8e237126
|
18.1 KiB | Download |
md5:3f4c5acc33ffd131e692fe5c227590c6
|
10.2 KiB | Download |
md5:881ccd1b6ed163aaf8b6442219205cf3
|
12.6 KiB | Download |
md5:c4155b48af1d81b2acadb297f9b38f0b
|
24.9 KiB | Download |
md5:800cd0efa7e5230285a40c29259f5625
|
12.6 KiB | Download |
md5:968f8f124275c74d2fcecb042c3825e7
|
84.5 KiB | Download |
md5:f84315f1487382f337925f9622fab07f
|
23.3 KiB | Download |
md5:4036a4a24aa4a78f84fe00384b4fe0d3
|
26.2 KiB | Download |
md5:c023ad87d399809c6f2d40e5fadb611f
|
12.3 KiB | Download |
md5:5fe56bf3e23b83d02e113bf60ec46057
|
23.3 KiB | Download |
md5:e7098a3927b3d0e46d0aac450208644c
|
222.2 KiB | Download |
md5:f6da6588873c5dd91efee4a381095551
|
31.7 KiB | Download |
md5:dede3d2daf4d8fc07f8b1cdef6c9d048
|
11.4 KiB | Download |
md5:d057ceb5298d2fd69dae1f133a302b7f
|
10.6 KiB | Download |
md5:0003d5afca6631f668767bf246ee19e6
|
124.1 KiB | Download |
md5:77c3ab6277fa287643055111cc084c03
|
29.0 KiB | Download |
md5:858a68d11829b83043831d3bdca074b6
|
40.3 KiB | Download |
md5:345cf45fecc12cde416fb064f2b769a2
|
48.0 KiB | Download |
md5:90b5aa06fdbb879555d9f5189a2f3126
|
51.2 KiB | Download |
md5:2c6b6cf2433e2c2555a9bd6caf5fe199
|
129.6 KiB | Download |
md5:05391a135e2564e5359258a08bf045e5
|
55.6 KiB | Download |
md5:f36cab3c72737a95720dec77a5a74c58
|
35.9 KiB | Download |
md5:1e6a7ba590aec52f9ab30f386820d60e
|
13.8 KiB | Download |
md5:db67d9153f5b4afedd0866aed017b584
|
32.6 KiB | Download |
md5:354df28c7180554c8a549d228d4a8bf2
|
8.9 MiB | Download |
md5:2dc4b76a3982cdb813961830e7af8fa3
|
16.4 KiB | Download |
md5:f3be51c4010bab0d37eb43e350f1ce58
|
19.4 KiB | Download |
md5:f32fe8bc15819f2c3caf69c454be7ad0
|
17.7 KiB | Download |
md5:53fee24c332e4f8f4e7ea9a28b6700c9
|
12.4 KiB | Download |
References
Preprint (Paper in which the method is described) Rui Zeng. et al. Achieving 19% efficiency in nonfused ring electron acceptor solar cells via solubility control of donor and acceptor crystallisation. (in preparation)