Published April 29, 2024 | Version v2
Dataset Open

Achieving 19% efficiency in nonfused ring electron acceptor solar cells via solubility control of donor and acceptor crystallisation

  • 1. School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China.
  • 2. College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
  • 3. Shanghai OPV Solar New Energy Technology Co., Ltd., Shanghai 201210, China.
  • 4. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
  • 5. Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA01003, USA.
  • 6. State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong 256401, China.
  • 7. Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
  • 8. Suzhou Laboratory, Suzhou 215100, China.

* Contact person

Description

Nonfused ring electron acceptors (NFREAs) are interesting n-type near infrared (NIR) photoactive semiconductors with strong molecular absorption and easy synthetic route. However, the low backbone planarity and bulky substitution make NFREA less crystalline, which significantly retards charge transport and the formation of bicontinuous morphology in organic photovoltaic device. Donor and acceptor solubility in different solvents is studied, and the created solubility hysteresis can induce the formation of the highly crystalline donor polymer fibril to purify the NFREA phase, thus a better bicontinuous morphology with improved crystallinity. Based on these results, a general solubility hysteresis sequential condensation (SHSC) thin film fabrication methodology is established to produce highly uniform and smooth photoactive layer. The well-defined interpenetrating network morphology afforded a record efficiency of 19.02%, which is ~22% improvement comparing to conventional device fabrication. A high efficiency retention (Pr) value of 92.3% is achieved in 1 cm² device (17.28% efficiency).

Files

File preview

files_description.md

All files

Files (10.1 MiB)

Name Size
md5:ce1bedd4c7b7f0b11fbaa89084363226
3.5 KiB Preview Download
md5:07debb2345658cef8b9189158f2c5635
9.0 KiB Download
md5:c36c81a57f083dd033ae37d99466e68f
8.8 KiB Download
md5:16d142c0841dd462430a671fd7384227
60.0 KiB Download
md5:b5746d7e16d554bc2ee4998d8e237126
18.1 KiB Download
md5:3f4c5acc33ffd131e692fe5c227590c6
10.2 KiB Download
md5:881ccd1b6ed163aaf8b6442219205cf3
12.6 KiB Download
md5:c4155b48af1d81b2acadb297f9b38f0b
24.9 KiB Download
md5:800cd0efa7e5230285a40c29259f5625
12.6 KiB Download
md5:968f8f124275c74d2fcecb042c3825e7
84.5 KiB Download
md5:f84315f1487382f337925f9622fab07f
23.3 KiB Download
md5:4036a4a24aa4a78f84fe00384b4fe0d3
26.2 KiB Download
md5:c023ad87d399809c6f2d40e5fadb611f
12.3 KiB Download
md5:5fe56bf3e23b83d02e113bf60ec46057
23.3 KiB Download
md5:e7098a3927b3d0e46d0aac450208644c
222.2 KiB Download
md5:f6da6588873c5dd91efee4a381095551
31.7 KiB Download
md5:dede3d2daf4d8fc07f8b1cdef6c9d048
11.4 KiB Download
md5:d057ceb5298d2fd69dae1f133a302b7f
10.6 KiB Download
md5:0003d5afca6631f668767bf246ee19e6
124.1 KiB Download
md5:77c3ab6277fa287643055111cc084c03
29.0 KiB Download
md5:858a68d11829b83043831d3bdca074b6
40.3 KiB Download
md5:345cf45fecc12cde416fb064f2b769a2
48.0 KiB Download
md5:90b5aa06fdbb879555d9f5189a2f3126
51.2 KiB Download
md5:2c6b6cf2433e2c2555a9bd6caf5fe199
129.6 KiB Download
md5:05391a135e2564e5359258a08bf045e5
55.6 KiB Download
md5:f36cab3c72737a95720dec77a5a74c58
35.9 KiB Download
md5:1e6a7ba590aec52f9ab30f386820d60e
13.8 KiB Download
md5:db67d9153f5b4afedd0866aed017b584
32.6 KiB Download
md5:354df28c7180554c8a549d228d4a8bf2
8.9 MiB Download
md5:2dc4b76a3982cdb813961830e7af8fa3
16.4 KiB Download
md5:f3be51c4010bab0d37eb43e350f1ce58
19.4 KiB Download
md5:f32fe8bc15819f2c3caf69c454be7ad0
17.7 KiB Download
md5:53fee24c332e4f8f4e7ea9a28b6700c9
12.4 KiB Download

References

Preprint (Paper in which the method is described)
Rui Zeng. et al. Achieving 19% efficiency in nonfused ring electron acceptor solar cells via solubility control of donor and acceptor crystallisation. (in preparation)