A microscopic picture of paraelectric perovskites from structural prototypes
Creators
- 1. Theory and Simulations of Materials (THEOS), École Polytechnique Fedérale de Lausanne, 1015 Lausanne, Switzerland
- 2. National Centre for Computational Design and Discovery of Novel Materials (MARVEL), 1015 Lausanne, Switzerland
- 3. Designed Material Technologies, LLC, P.O. Box 14548, Richmond, VA 23221-9998, US
- 4. John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
- 5. Robert Bosch LLC, Research and Technology Center, Cambridge, Massachusetts 02142, USA
- 6. Department of Physics and Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, Michigan 48859, US
* Contact person
Description
This work details how to determine structural prototypes for the cubic perovskite structure that are used to study the B-site displacements in the cubic, paraelectric phase. Car-Parrinello MD simulations of cubic barium titanate (BaTiO3) show the titanium displacements from the undistorted cubic structure. Using a systematic symmetry analysis we construct microscopic templates, i.e. representative structural models in the form of supercells that satisfy a desired point symmetry but are built from the combination of lower-symmetry primitive cells. Density functional theory calculations, using the microscopic templates as starting structures for a relaxation, are carried out to find structural prototypes of BaTiO3 with local polar distortions but with cubic point symmetry. The stability of these structures is studied as a function of volume and with respect to the zone-boundary phonons of pristine cubic BaTiO3. The stable distortions patterns for BaTiO3 are investigated for other titanates and for a handful of niobates and zirconates.
Files
File preview
files_description.md
All files
Files
(607.5 MiB)
Name | Size | |
---|---|---|
md5:af73c52fa9001c05383cc8db96041104
|
1.3 KiB | Preview Download |
md5:3d961798e928c68d74e87cc97a048729
|
314.6 MiB | Preview Download |
md5:d5de060f9d447b88d4ef8a2c60b1866f
|
239.1 MiB | Download |
md5:785730b6237f72e7297577ad43498877
|
8.4 MiB | Preview Download |
md5:de1207ab0f532282f4733e8d039ad45d
|
18.2 MiB | Preview Download |
md5:f0ed9c7b434b933dc4124f3100f8216b
|
8.6 KiB | Download |
md5:ff653596767e303f7f23ba228810a2c7
|
27.2 MiB | Preview Download |
md5:d990eba789b18b991aad5cba38edffee
|
1.1 KiB | Preview Download |
References
Preprint M. Kotiuga, S. Halilov, B. Kozinsky, M. Fornari, N. Marzari, G. Pizzi, arXiv preprint (2021), submit/3831960.
Journal reference M. Kotiuga, S. Halilov, B. Kozinsky, M. Fornari, N. Marzari, and G.Pizzi, Phys. Rev. Research 4, L012042 (2022), doi: 10.1103/PhysRevResearch.4.L012042