Dynamic response of oxygen vacancies on the Deacon reaction over reduced single crystalline CeO₂-x(111) surfaces
- 1. Physical Chemistry Department, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- 2. Institute of Catalysis and Petrochemistry, ICP, Spanish National Research Council, CSIC, 28049 Madrid, Spain
- 3. Institute of Physics Rosario, IFIR, National Scientific and Technical Research Council, CONICET, S2000EKF Rosario, Santa Fe, Argentina
* Contact person
Description
The heterogeneously catalyzed HCl oxidation reaction (Deacon reaction) over ceria leads under typical reaction conditions to a reduction and surface chlorination of CeO2. The reduced single crystalline CeO2-x(111) model surface stabilizes various ordered surface structures, e.g. (√7 × √7)R19.1°, (3 × 3), or (4 × 4), depending on the concentration of oxygen vacancies (VO). Saturating these phases with HCl at room temperature, followed by annealing to the process temperature of 700 K, leads in all cases to a uniformly covering (√3 × √3)R30° overlayer structure with identical Cl coverage and identical adsorption geometry. Low energy electron diffraction (LEED) fingerprinting, density functional theory (DFT) calculations and X-ray photoelectron spectroscopy (XPS) evidence that Cl adsorbs into the O-vacancy at the surface (Clvac) with a high adsorption energy (>2 eV). From thermal desorption spectroscopy (TDS) and XPS of Cl 2p the adsorption energy of Clvac and the water formation is found to dependent sensitively on the degree of bulk-reduction x of CeO2-x(111). Chlorine desorption in TDS shifts from 1175 K to 1320 K when the the reduction degree x is increased from CeO1.8(111) (x = 0.2) to CeO1.6(111) (x = 0.4). In order to rationalize why the formation of (√3 × √3)R30°-Clvac structure on CeO2-x(111) is independent of the original reduction degree x of CeO2 x(111), efficient diffusion of surface and bulk oxygen vacancies (VO) is required.
Files
File preview
files_description.md
All files
Files
(229.9 MiB)
Name | Size | |
---|---|---|
md5:9c0e7d0791cb089656bd9dcee2d3ad1f
|
598 Bytes | Preview Download |
md5:cf5ffcd5b11b71b26a806b0cf56d9a47
|
153.6 MiB | Preview Download |
md5:e0d69c085cdccb4b5b13a90cf9730431
|
14.8 MiB | Preview Download |
md5:7e4495b8dddf550ded6e0d4c7cb0a01f
|
2.0 KiB | Preview Download |
md5:ba27b5bb69a3c59a5b7605655ee47fac
|
61.5 MiB | Preview Download |
References
Journal reference (Paper where the data is discussed) V. Koller, C. Sack, P. Lustemberg, M.V. Ganduglia-Pirovano, H. Over, J. Phys. Chem. C XX, XX (2022)